|
import math |
|
import random |
|
from typing import Optional, Tuple |
|
|
|
from fairseq.checkpoint_utils import load_model_ensemble_and_task |
|
from fairseq.utils import index_put |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
def pad_to_multiple(x, multiple, dim=-1, value=0): |
|
|
|
if x is None: |
|
return None, 0 |
|
tsz = x.size(dim) |
|
m = tsz / multiple |
|
remainder = math.ceil(m) * multiple - tsz |
|
if int(tsz % multiple) == 0: |
|
return x, 0 |
|
pad_offset = (0,) * (-1 - dim) * 2 |
|
|
|
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder |
|
|
|
|
|
def extract_features( |
|
self, |
|
x, |
|
padding_mask=None, |
|
tgt_layer=None, |
|
min_layer=0, |
|
): |
|
if padding_mask is not None: |
|
x = index_put(x, padding_mask, 0) |
|
|
|
x_conv = self.pos_conv(x.transpose(1, 2)) |
|
x_conv = x_conv.transpose(1, 2) |
|
x = x + x_conv |
|
|
|
if not self.layer_norm_first: |
|
x = self.layer_norm(x) |
|
|
|
|
|
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0) |
|
if pad_length > 0 and padding_mask is None: |
|
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) |
|
padding_mask[:, -pad_length:] = True |
|
else: |
|
padding_mask, _ = pad_to_multiple( |
|
padding_mask, self.required_seq_len_multiple, dim=-1, value=True |
|
) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
layer_results = [] |
|
r = None |
|
for i, layer in enumerate(self.layers): |
|
dropout_probability = np.random.random() if self.layerdrop > 0 else 1 |
|
if not self.training or (dropout_probability > self.layerdrop): |
|
x, (z, lr) = layer( |
|
x, self_attn_padding_mask=padding_mask, need_weights=False |
|
) |
|
if i >= min_layer: |
|
layer_results.append((x, z, lr)) |
|
if i == tgt_layer: |
|
r = x |
|
break |
|
|
|
if r is not None: |
|
x = r |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
|
|
if pad_length > 0: |
|
x = x[:, :-pad_length] |
|
|
|
def undo_pad(a, b, c): |
|
return ( |
|
a[:-pad_length], |
|
b[:-pad_length] if b is not None else b, |
|
c[:-pad_length], |
|
) |
|
|
|
layer_results = [undo_pad(*u) for u in layer_results] |
|
|
|
return x, layer_results |
|
|
|
|
|
def compute_mask_indices( |
|
shape: Tuple[int, int], |
|
padding_mask: Optional[torch.Tensor], |
|
mask_prob: float, |
|
mask_length: int, |
|
mask_type: str = "static", |
|
mask_other: float = 0.0, |
|
min_masks: int = 0, |
|
no_overlap: bool = False, |
|
min_space: int = 0, |
|
require_same_masks: bool = True, |
|
mask_dropout: float = 0.0, |
|
) -> torch.Tensor: |
|
""" |
|
Computes random mask spans for a given shape |
|
|
|
Args: |
|
shape: the the shape for which to compute masks. |
|
should be of size 2 where first element is batch size and 2nd is timesteps |
|
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements |
|
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by |
|
number of timesteps divided by length of mask span to mask approximately this percentage of all elements. |
|
however due to overlaps, the actual number will be smaller (unless no_overlap is True) |
|
mask_type: how to compute mask lengths |
|
static = fixed size |
|
uniform = sample from uniform distribution [mask_other, mask_length*2] |
|
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element |
|
poisson = sample from possion distribution with lambda = mask length |
|
min_masks: minimum number of masked spans |
|
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping |
|
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans |
|
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample |
|
mask_dropout: randomly dropout this percentage of masks in each example |
|
""" |
|
|
|
bsz, all_sz = shape |
|
mask = torch.full((bsz, all_sz), False) |
|
|
|
all_num_mask = int( |
|
|
|
mask_prob * all_sz / float(mask_length) |
|
+ torch.rand([1]).item() |
|
) |
|
|
|
all_num_mask = max(min_masks, all_num_mask) |
|
|
|
mask_idcs = [] |
|
for i in range(bsz): |
|
if padding_mask is not None: |
|
sz = all_sz - padding_mask[i].long().sum().item() |
|
num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand()) |
|
num_mask = max(min_masks, num_mask) |
|
else: |
|
sz = all_sz |
|
num_mask = all_num_mask |
|
|
|
if mask_type == "static": |
|
lengths = torch.full([num_mask], mask_length) |
|
elif mask_type == "uniform": |
|
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask]) |
|
elif mask_type == "normal": |
|
lengths = torch.normal(mask_length, mask_other, size=[num_mask]) |
|
lengths = [max(1, int(round(x))) for x in lengths] |
|
else: |
|
raise Exception("unknown mask selection " + mask_type) |
|
|
|
if sum(lengths) == 0: |
|
lengths[0] = min(mask_length, sz - 1) |
|
|
|
if no_overlap: |
|
mask_idc = [] |
|
|
|
def arrange(s, e, length, keep_length): |
|
span_start = torch.randint(low=s, high=e - length, size=[1]).item() |
|
mask_idc.extend(span_start + i for i in range(length)) |
|
|
|
new_parts = [] |
|
if span_start - s - min_space >= keep_length: |
|
new_parts.append((s, span_start - min_space + 1)) |
|
if e - span_start - length - min_space > keep_length: |
|
new_parts.append((span_start + length + min_space, e)) |
|
return new_parts |
|
|
|
parts = [(0, sz)] |
|
min_length = min(lengths) |
|
for length in sorted(lengths, reverse=True): |
|
t = [e - s if e - s >= length + min_space else 0 for s, e in parts] |
|
lens = torch.asarray(t, dtype=torch.int) |
|
l_sum = torch.sum(lens) |
|
if l_sum == 0: |
|
break |
|
probs = lens / torch.sum(lens) |
|
c = torch.multinomial(probs.float(), len(parts)).item() |
|
s, e = parts.pop(c) |
|
parts.extend(arrange(s, e, length, min_length)) |
|
mask_idc = torch.asarray(mask_idc) |
|
else: |
|
min_len = min(lengths) |
|
if sz - min_len <= num_mask: |
|
min_len = sz - num_mask - 1 |
|
mask_idc = torch.asarray( |
|
random.sample([i for i in range(sz - min_len)], num_mask) |
|
) |
|
mask_idc = torch.asarray( |
|
[ |
|
mask_idc[j] + offset |
|
for j in range(len(mask_idc)) |
|
for offset in range(lengths[j]) |
|
] |
|
) |
|
|
|
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz])) |
|
|
|
min_len = min([len(m) for m in mask_idcs]) |
|
for i, mask_idc in enumerate(mask_idcs): |
|
if isinstance(mask_idc, torch.Tensor): |
|
mask_idc = torch.asarray(mask_idc, dtype=torch.float) |
|
if len(mask_idc) > min_len and require_same_masks: |
|
mask_idc = torch.asarray( |
|
random.sample([i for i in range(mask_idc)], min_len) |
|
) |
|
if mask_dropout > 0: |
|
num_holes = int(round(len(mask_idc) * mask_dropout)) |
|
mask_idc = torch.asarray( |
|
random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes) |
|
) |
|
|
|
mask[i, mask_idc.int()] = True |
|
|
|
return mask |
|
|
|
|
|
def apply_mask(self, x, padding_mask, target_list): |
|
B, T, C = x.shape |
|
torch.zeros_like(x) |
|
if self.mask_prob > 0: |
|
mask_indices = compute_mask_indices( |
|
(B, T), |
|
padding_mask, |
|
self.mask_prob, |
|
self.mask_length, |
|
self.mask_selection, |
|
self.mask_other, |
|
min_masks=2, |
|
no_overlap=self.no_mask_overlap, |
|
min_space=self.mask_min_space, |
|
) |
|
mask_indices = mask_indices.to(x.device) |
|
x[mask_indices] = self.mask_emb |
|
else: |
|
mask_indices = None |
|
|
|
if self.mask_channel_prob > 0: |
|
mask_channel_indices = compute_mask_indices( |
|
(B, C), |
|
None, |
|
self.mask_channel_prob, |
|
self.mask_channel_length, |
|
self.mask_channel_selection, |
|
self.mask_channel_other, |
|
no_overlap=self.no_mask_channel_overlap, |
|
min_space=self.mask_channel_min_space, |
|
) |
|
mask_channel_indices = ( |
|
mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1) |
|
) |
|
x[mask_channel_indices] = 0 |
|
|
|
return x, mask_indices |
|
|
|
|
|
def get_hubert(model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu")): |
|
models, _, _ = load_model_ensemble_and_task( |
|
[model_path], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(device) |
|
|
|
def _apply_mask(x, padding_mask, target_list): |
|
return apply_mask(hubert_model, x, padding_mask, target_list) |
|
|
|
hubert_model.apply_mask = _apply_mask |
|
|
|
def _extract_features( |
|
x, |
|
padding_mask=None, |
|
tgt_layer=None, |
|
min_layer=0, |
|
): |
|
return extract_features( |
|
hubert_model.encoder, |
|
x, |
|
padding_mask=padding_mask, |
|
tgt_layer=tgt_layer, |
|
min_layer=min_layer, |
|
) |
|
|
|
hubert_model.encoder.extract_features = _extract_features |
|
|
|
hubert_model._forward = hubert_model.forward |
|
|
|
def hubert_extract_features( |
|
self, |
|
source: torch.Tensor, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
mask: bool = False, |
|
ret_conv: bool = False, |
|
output_layer: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
res = self._forward( |
|
source, |
|
padding_mask=padding_mask, |
|
mask=mask, |
|
features_only=True, |
|
output_layer=output_layer, |
|
) |
|
feature = res["features"] if ret_conv else res["x"] |
|
return feature, res["padding_mask"] |
|
|
|
def _hubert_extract_features( |
|
source: torch.Tensor, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
mask: bool = False, |
|
ret_conv: bool = False, |
|
output_layer: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
return hubert_extract_features( |
|
hubert_model, source, padding_mask, mask, ret_conv, output_layer |
|
) |
|
|
|
hubert_model.extract_features = _hubert_extract_features |
|
|
|
def infer(source, padding_mask, output_layer: torch.Tensor): |
|
output_layer = output_layer.item() |
|
logits = hubert_model.extract_features( |
|
source=source, padding_mask=padding_mask, output_layer=output_layer |
|
) |
|
feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0] |
|
return feats |
|
|
|
hubert_model.infer = infer |
|
|
|
|
|
|
|
return hubert_model |
|
|