Borcherding's picture
Update app.py
a436bfa verified
raw
history blame
6.8 kB
import gradio as gr
import numpy as np
import spaces
import torch
import random
import gc
from peft import PeftModel
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from image_gen_aux import DepthPreprocessor
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def init_pipeline():
"""Initialize pipeline with memory-efficient settings"""
pipe = FluxControlPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_safetensors=True
)
return pipe
# Initialize models without moving to CUDA
pipe = init_pipeline()
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
def cleanup_memory():
"""Aggressive memory cleanup"""
if torch.cuda.is_available():
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def reinit_pipeline():
"""Reinitialize the pipeline if needed"""
global pipe
cleanup_memory()
pipe = init_pipeline()
cleanup_memory()
@spaces.GPU
def load_lora(lora_path):
global pipe
if not lora_path.strip():
return "Please provide a valid LoRA path"
try:
cleanup_memory()
# Reinitialize pipeline
reinit_pipeline()
# Enable sequential CPU offload
pipe.enable_sequential_cpu_offload()
# Load LoRA weights
pipe.load_lora_weights(lora_path)
cleanup_memory()
return f"Successfully loaded LoRA weights from {lora_path}"
except Exception as e:
cleanup_memory()
return f"Error loading LoRA weights: {str(e)}"
@spaces.GPU
def unload_lora():
global pipe
try:
cleanup_memory()
reinit_pipeline()
pipe.enable_sequential_cpu_offload()
pipe.unload_lora_weights()
cleanup_memory()
return "Successfully unloaded LoRA weights"
except Exception as e:
cleanup_memory()
return f"Error unloading LoRA weights: {str(e)}"
def round_to_multiple(number, multiple):
return multiple * round(number / multiple)
@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
try:
cleanup_memory()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Ensure dimensions are divisible by 16
width = round_to_multiple(width, 16)
height = round_to_multiple(height, 16)
# Process control image
control_image = processor(control_image)[0].convert("RGB")
# Generate image with memory optimization
with torch.inference_mode(), torch.cuda.amp.autocast():
image = pipe(
prompt=prompt,
control_image=control_image,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator("cuda").manual_seed(seed),
).images[0]
cleanup_memory()
return image, seed
except Exception as e:
cleanup_memory()
return None, f"Error during inference: {str(e)}"
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Depth [dev] with LoRA Support
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
# LoRA controls
with gr.Row():
lora_path = gr.Textbox(
label="HuggingFace LoRA Path",
placeholder="e.g., Borcherding/FLUX.1-dev-LoRA-AutumnSpringTrees"
)
load_lora_btn = gr.Button("Load LoRA")
unload_lora_btn = gr.Button("Unload LoRA")
lora_status = gr.Textbox(label="LoRA Status", interactive=False)
control_image = gr.Image(label="Upload the image for control", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
error_message = gr.Textbox(label="Error", visible=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=10,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
# Event handlers
load_lora_btn.click(
fn=load_lora,
inputs=[lora_path],
outputs=[lora_status]
)
unload_lora_btn.click(
fn=unload_lora,
inputs=[],
outputs=[lora_status]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()