adminzy / app.py
BramLeo's picture
Update app.py
ecb0859 verified
raw
history blame
5.45 kB
# Import Library yang Diperlukan
import gradio as gr
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from llama_cpp import Llama
from llama_index.core import VectorStoreIndex, Settings
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.llama_cpp import LlamaCPP
from huggingface_hub import hf_hub_download
from llama_index.core.llms import ChatMessage
from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
from llama_index.core.schema import Document
# ===================================
# 1️⃣ Fungsi untuk Membaca Google Spreadsheet
# ===================================
def read_google_sheet():
try:
# Tentukan scope akses ke Google Sheets & Drive
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
# Load kredensial dari file credentials.json
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
client = gspread.authorize(creds)
# πŸ“Œ Gunakan ID Spreadsheet (lebih aman)
SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg" # πŸ”Ή Ganti dengan ID spreadsheet Anda
SHEET_NAME = "datatarget" # πŸ”Ή Ganti dengan nama sheet
# Buka spreadsheet dan worksheet
spreadsheet = client.open_by_key(SPREADSHEET_ID)
sheet = spreadsheet.worksheet(SHEET_NAME)
# Ambil semua data dalam bentuk list (baris & kolom)
data = sheet.get_all_values()
# Format ulang data menjadi satu teks panjang (dapat disesuaikan)
formatted_text = "\n".join([" | ".join(row) for row in data])
return formatted_text
except gspread.exceptions.SpreadsheetNotFound:
return "❌ ERROR: Spreadsheet tidak ditemukan. Pastikan ID/nama benar!"
except gspread.exceptions.WorksheetNotFound:
return "❌ ERROR: Worksheet tidak ditemukan. Periksa kembali nama sheet!"
except Exception as e:
return f"❌ ERROR: {str(e)}"
# ===================================
# 2️⃣ Fungsi untuk Mengunduh Model Llama
# ===================================
def initialize_llama_model():
model_path = hf_hub_download(
repo_id="TheBLoke/zephyr-7b-beta-GGUF", # πŸ“Œ Repo model HuggingFace
filename="zephyr-7b-beta.Q4_K_M.gguf", # πŸ“Œ Nama file model
cache_dir="./models"
)
return model_path
# ===================================
# 3️⃣ Inisialisasi Model dan Pengaturan
# ===================================
def initialize_settings(model_path):
Settings.llm = LlamaCPP(
model_path=model_path,
temperature=0.7,
)
# ===================================
# 4️⃣ Inisialisasi Index dari Data Spreadsheet
# ===================================
def initialize_index():
# πŸ”Ή Ambil teks dari Google Spreadsheet
text_data = read_google_sheet()
# πŸ”Ή Konversi teks ke dalam format dokumen yang benar
document = Document(text=text_data) # πŸ”Ή Ubah teks menjadi objek `Document`
documents = [document] # πŸ”Ή Masukkan ke dalam list
# πŸ”Ή Proses data menjadi node untuk vektor embedding
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
nodes = parser.get_nodes_from_documents(documents) # βœ… Sekarang `documents` adalah list of `Document`
# πŸ”Ή Gunakan model embedding
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
Settings.embed_model = embedding
# πŸ”Ή Buat index vektor
index = VectorStoreIndex(nodes)
return index
# ===================================
# 5️⃣ Inisialisasi Mesin Chatbot
# ===================================
def initialize_chat_engine(index):
retriever = index.as_retriever(similarity_top_k=3)
chat_engine = CondensePlusContextChatEngine.from_defaults(
retriever=retriever,
verbose=True,
)
return chat_engine
# ===================================
# 6️⃣ Fungsi untuk Menghasilkan Respons Chatbot
# ===================================
def generate_response(message, history, chat_engine):
if history is None:
history = []
chat_messages = [
ChatMessage(
role="system",
content="Anda adalah chatbot yang menjawab dalam bahasa Indonesia berdasarkan dokumen di Google Spreadsheet."
),
]
response = chat_engine.stream_chat(message)
text = "".join(response.response_gen) # πŸ”Ή Gabungkan semua token menjadi string
history.append((message, text))
return history
# ===================================
# 7️⃣ Fungsi Utama untuk Menjalankan Aplikasi
# ===================================
def main():
# πŸ”Ή Unduh model dan inisialisasi pengaturan
model_path = initialize_llama_model()
initialize_settings(model_path)
# πŸ”Ή Inisialisasi index dan chat engine
index = initialize_index()
chat_engine = initialize_chat_engine(index)
# πŸ”Ή Fungsi untuk chat
def chatbot_response(message, history):
return generate_response(message, history, chat_engine)
# πŸ”Ή Luncurkan Gradio UI
gr.Interface(
fn=chatbot_response,
inputs=["text"],
outputs=["text"],
).launch()
if __name__ == "__main__":
main()