File size: 11,105 Bytes
d1253a8 8e901a2 107c2a4 863e074 8e901a2 863e074 5693ee5 8c2ee0f d1253a8 5693ee5 863e074 f067bfb d1253a8 8e901a2 d1253a8 8e901a2 107c2a4 0658988 107c2a4 8e901a2 107c2a4 809ba3d 8e901a2 0658988 809ba3d 0658988 8e901a2 0658988 8e901a2 809ba3d 8e901a2 7508449 8e901a2 6d6063e 8e901a2 515327e 8e901a2 107c2a4 8e901a2 515327e 8e901a2 0658988 8e901a2 0658988 8e901a2 809ba3d 8e901a2 809ba3d 8e901a2 107c2a4 8e901a2 809ba3d 8e901a2 515327e 8e901a2 809ba3d 8e901a2 107c2a4 8e901a2 5693ee5 8e901a2 863e074 d1253a8 8e901a2 d1253a8 0658988 8e901a2 0658988 8e901a2 5693ee5 8e901a2 5693ee5 8e901a2 8c2ee0f 8e901a2 8c2ee0f d1253a8 5693ee5 f067bfb 5693ee5 0658988 809ba3d 0658988 8e901a2 5693ee5 8e901a2 5693ee5 8e901a2 1242077 8e901a2 5693ee5 8e901a2 8c2ee0f b268b1d 06aa2d9 f067bfb 5693ee5 8e901a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import json
from collections import defaultdict
from dataclasses import dataclass, field, fields
from functools import cached_property
from pathlib import Path
from typing import Literal
import numpy as np
import pandas as pd
import gradio as gr
from pandas import DataFrame
from pandas.io.formats.style import Styler
from content import *
TASK_METRICS = {
"arc": "acc_norm",
"hellaswag": "acc_norm",
"mmlu": "acc_norm",
"truthfulqa": "mc2",
}
MODEL_TYPE_EMOJIS = {
"pretrained": "🟢",
"fine-tuned": "🔶",
"instruction-tuned": "⭕",
"RL-tuned": "🟦",
}
NOT_GIVEN_SYMBOL = "❔"
@dataclass
class Result:
model_name: str
short_name: str
model_type: Literal["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned"]
dutch_coverage: Literal["none", "pretrained", "fine-tuned"]
num_parameters: int
arc: float = field(default=np.nan)
average: float = field(default=np.nan, init=False)
hellaswag: float = field(default=np.nan)
mmlu: float = field(default=np.nan)
truthfulqa: float = field(default=np.nan)
num_parameters_kmb: str = field(init=False)
def __post_init__(self):
if self.model_type not in ["pretrained", "fine-tuned", "instruction-tuned", "RL-tuned", "not-given"]:
raise ValueError(
f"Model type {self.model_type} must be one of 'pretrained', 'fine-tuned',"
f" 'instruction-tuned', 'RL-tuned', 'not-given"
)
if self.dutch_coverage not in ["none", "pretrained", "fine-tuned", "not-given"]:
raise ValueError(
f"Dutch coverage {self.dutch_coverage} must be one of 'none', 'pretrained', 'fine-tuned', 'not-given"
)
field_names = {f.name for f in fields(self)}
for task_name in TASK_METRICS:
if task_name not in field_names:
raise ValueError(f"Task name {task_name} not found in Result class fields so cannot create DataFrame")
if any([np.isnan(getattr(self, task_name)) for task_name in TASK_METRICS]):
self.average = np.nan
else:
self.average = sum([getattr(self, task_name) for task_name in TASK_METRICS]) / 4
self.num_parameters_kmb = convert_number_to_kmb(self.num_parameters)
@dataclass
class ResultSet:
results: list[Result]
column_names: dict[str, str] = field(default_factory=dict)
column_types: dict[str, str] = field(default_factory=dict)
def __post_init__(self):
if not self.column_names:
# Order will be the order of the columns in the DataFrame
self.column_names = {
"short_name": "Model",
"model_type": "T",
"dutch_coverage": "🇳🇱",
"num_parameters": "Size",
"average": "Avg.",
"arc": "ARC (25-shot)",
"hellaswag": "HellaSwag (10-shot)",
"mmlu": "MMLU (5-shot)",
"truthfulqa": "TruthfulQA (0-shot)",
}
self.column_types = {
"Model": "markdown",
"T": "str",
"🇳🇱": "str",
"Size": "str",
"Avg.": "number",
"ARC (25-shot)": "number",
"HellaSwag (10-shot)": "number",
"MMLU (5-shot)": "number",
"TruthfulQA (0-shot)": "number",
}
for column_type in self.column_types:
if column_type not in set(self.column_names.values()):
raise ValueError(
f"Column names specified in column_types must be values in column_names."
f" {column_type} not found."
)
if "average" not in self.column_names:
raise ValueError("Column names must contain 'average' column name")
field_names = [f.name for f in fields(Result)]
for column_name in self.column_names:
if column_name not in field_names:
raise ValueError(f"Column name {column_name} not found in Result class so cannot create DataFrame")
@cached_property
def df(self) -> DataFrame:
data = [
{col_name: getattr(result, attr) for attr, col_name in self.column_names.items()}
for result in self.results
]
df = pd.DataFrame(data)
df = df.sort_values(by=self.column_names["average"], ascending=False)
return df
@cached_property
def styled_df(self) -> Styler:
data = [
{
col_name: (
f"<a target='_blank' href='https://huggingface.co/{result.model_name}'"
f" style='color: var(--link-text-color); text-decoration: underline;text-decoration-style:"
f" dotted;'>{result.short_name}</a>"
)
if attr == "short_name"
else MODEL_TYPE_EMOJIS.get(result.model_type, NOT_GIVEN_SYMBOL)
if attr == "model_type"
else (result.dutch_coverage if result.dutch_coverage != "not-given" else NOT_GIVEN_SYMBOL)
if attr == "dutch_coverage"
else getattr(result, attr)
for attr, col_name in self.column_names.items()
}
for result in self.results
]
df = pd.DataFrame(data)
df = df.sort_values(by=self.column_names["average"], ascending=False)
number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
styler = df.style.format("{:.2f}", subset=number_cols, na_rep="<missing>")
def highlight_max(col):
return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)
styler = styler.apply(highlight_max, axis=0, subset=number_cols)
num_params_col = self.column_names["num_parameters"]
styler = styler.format(convert_number_to_kmb, subset=num_params_col)
styler.set_caption("Leaderboard on Dutch benchmarks.")
styler = styler.hide()
return styler
@cached_property
def latex_df(self) -> Styler:
number_cols = [col for attr, col in self.column_names.items() if attr in TASK_METRICS or attr == "average"]
styler = self.df.style.format("{:.2f}", subset=number_cols, na_rep="<missing>")
def highlight_max(col):
return np.where(col == np.nanmax(col.to_numpy()), "font-weight: bold;", None)
styler = styler.apply(highlight_max, axis=0, subset=number_cols)
num_params_col = self.column_names["num_parameters"]
styler = styler.format(convert_number_to_kmb, subset=num_params_col)
styler.set_caption("Leaderboard on Dutch benchmarks.")
styler = styler.hide()
return styler
def convert_number_to_kmb(number: int) -> str:
"""
Converts a number to a string with K, M or B suffix
:param number: the number to convert
:return: a string with the number and a suffix, e.g. "7B", rounded to one decimal
"""
if number >= 1_000_000_000:
return f"{round(number / 1_000_000_000, 1)}B"
elif number >= 1_000_000:
return f"{round(number / 1_000_000, 1)}M"
elif number >= 1_000:
return f"{round(number / 1_000, 1)}K"
else:
return str(number)
def collect_results() -> ResultSet:
"""
Collects results from the evals folder and returns a dictionary of results
:return: a dictionary of results where the keys are typles of (model_name, language) and the values are
dictionaries of the form {benchmark_name: performance_score}
"""
evals_dir = Path(__file__).parent.joinpath("evals")
pf_overview = evals_dir.joinpath("models.json")
if not pf_overview.exists():
raise ValueError(
f"Overview file {pf_overview} not found. Make sure to generate it first with `generate_overview_json.py`."
)
model_info = json.loads(pf_overview.read_text(encoding="utf-8"))
model_results = {}
for pfin in evals_dir.rglob("*.json"):
data = json.loads(pfin.read_text(encoding="utf-8"))
if "results" not in data:
continue
task_results = data["results"]
short_name = pfin.stem.split("_", 2)[2].lower()
if short_name not in model_info:
raise KeyError(
f"Model {short_name} not found in overview file {pf_overview.name}. This means that a results JSON"
f" file exists that has not yet been processed. First run the `generate_overview_json.py` script."
)
if short_name not in model_results:
model_results[short_name] = {
"short_name": short_name,
"model_name": model_info[short_name]["model_name"],
"model_type": model_info[short_name]["model_type"],
"dutch_coverage": model_info[short_name]["dutch_coverage"],
"num_parameters": model_info[short_name]["num_parameters"],
}
for task_name, task_result in task_results.items():
task_name = task_name.rsplit("_", 1)[0]
metric = TASK_METRICS[task_name]
model_results[short_name][task_name] = task_result[metric]
model_results = ResultSet([Result(**res) for short_name, res in model_results.items()])
return model_results
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.Markdown(INTRO_TEXT)
gr.Markdown(
f"## Leaderboard\nOnly representative for the Dutch version (`*_nl`) of the benchmarks!"
" All models have been benchmarked in 8-bit. `<missing>` values indicate that those benchmarks are still"
" pending."
)
results = collect_results()
gr.components.Dataframe(
results.styled_df,
headers=list(results.df.columns),
datatype=[results.column_types[col] for col in results.df.columns], # To ensure same order as headers
interactive=False,
elem_id="leaderboard-table",
)
with gr.Row():
with gr.Column():
modeltypes_str = "<br>".join([f"- {emoji}: {modeltype}" for modeltype, emoji in MODEL_TYPE_EMOJIS.items()])
gr.Markdown(f"Model types:<br>{modeltypes_str}")
with gr.Column():
gr.Markdown(
f"Language coverage ({results.column_names['dutch_coverage']}):"
f"<br>- `none`: no explicit/deliberate Dutch coverage,"
f"<br>- `pretrained`: pretrained on Dutch data,"
f"<br>- `fine-tuned`: fine-tuned on Dutch data"
)
with gr.Column():
metrics_str = "<br>".join([f"- {task}: `{metric}`" for task, metric in TASK_METRICS.items()])
gr.Markdown(f"Reported metrics:<br>{metrics_str}")
gr.Markdown("## LaTeX")
gr.Code(results.latex_df.to_latex(convert_css=True))
gr.Markdown(DISCLAIMER, elem_classes="markdown-text")
gr.Markdown(CREDIT, elem_classes="markdown-text")
gr.Markdown(CITATION, elem_classes="markdown-text")
if __name__ == "__main__":
demo.launch()
|