Spaces:
Sleeping
Sleeping
File size: 20,874 Bytes
f036197 64ec1e5 f583bc0 f036197 a249916 90d2f63 61ff8d5 90d2f63 de5dcb7 a249916 f036197 90d2f63 f036197 a1a6383 90d2f63 f036197 42c888f 90d2f63 f036197 42c888f 251bfda 42c888f 251bfda 42c888f 64ec1e5 42c888f f036197 42c888f 64ec1e5 42c888f f036197 90d2f63 42c888f 90d2f63 42c888f 90d2f63 42c888f f036197 de5dcb7 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 90d2f63 a249916 f036197 a249916 f036197 a249916 de5dcb7 a249916 de5dcb7 a249916 de5dcb7 a249916 de5dcb7 42c888f de5dcb7 f036197 90d2f63 251bfda 90d2f63 f036197 61ff8d5 42c888f 61ff8d5 42c888f 61ff8d5 42c888f 61ff8d5 42c888f 61ff8d5 90d2f63 f036197 90d2f63 f036197 90d2f63 4c522b3 a249916 4c522b3 90d2f63 251bfda 90d2f63 61ff8d5 f6ab8c5 de5dcb7 f6ab8c5 61ff8d5 de5dcb7 a249916 61ff8d5 a249916 de5dcb7 a249916 251bfda a249916 251bfda de5dcb7 a249916 de5dcb7 42c888f de5dcb7 a249916 61ff8d5 90d2f63 a249916 de5dcb7 90d2f63 61ff8d5 de5dcb7 90d2f63 de5dcb7 42c888f de5dcb7 42c888f de5dcb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Add test cases, Remove tokenize_sentences flag since it can be determined from the input itself.
"""Sem-F1 metric"""
from typing import List, Optional, Tuple
import datasets
import evaluate
import nltk
import numpy as np
from numpy.typing import NDArray
from sklearn.metrics.pairwise import cosine_similarity
from encoder_models import get_encoder
from type_aliases import DEVICE_TYPE, PREDICTION_TYPE, REFERENCE_TYPE
from utils import is_nested_list_of_type, Scores, slice_embeddings, flatten_list, get_gpu
_CITATION = """\
@inproceedings{bansal-etal-2022-sem,
title = "{SEM}-F1: an Automatic Way for Semantic Evaluation of Multi-Narrative Overlap Summaries at Scale",
author = "Bansal, Naman and
Akter, Mousumi and
Karmaker Santu, Shubhra Kanti",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.49",
doi = "10.18653/v1/2022.emnlp-main.49",
pages = "780--792",
abstract = "Recent work has introduced an important yet relatively under-explored NLP task called Semantic Overlap Summarization (SOS) that entails generating a summary from multiple alternative narratives which conveys the common information provided by those narratives. Previous work also published a benchmark dataset for this task by collecting 2,925 alternative narrative pairs from the web and manually annotating 411 different reference summaries by engaging human annotators. In this paper, we exclusively focus on the automated evaluation of the SOS task using the benchmark dataset. More specifically, we first use the popular ROUGE metric from text-summarization literature and conduct a systematic study to evaluate the SOS task. Our experiments discover that ROUGE is not suitable for this novel task and therefore, we propose a new sentence-level precision-recall style automated evaluation metric, called SEM-F1 (Semantic F1). It is inspired by the benefits of the sentence-wise annotation technique using overlap labels reported by the previous work. Our experiments show that the proposed SEM-F1 metric yields a higher correlation with human judgment and higher inter-rater agreement compared to the ROUGE metric.",
}
"""
_DESCRIPTION = """\
Sem-F1 metric leverages the pre-trained contextual embeddings and evaluates the model generated
semantic overlap summary with the reference overlap summary. It evaluates the semantic overlap summary at the
sentence level and computes precision, recall and F1 scores.
"""
_KWARGS_DESCRIPTION = """
Sem-F1 compares the system-generated summaries (predictions) with ground truth reference summaries (references)
using precision, recall, and F1 score based on sentence embeddings.
Args:
predictions (list): List of predictions. Format varies based on `tokenize_sentences` and `multi_references` flags.
references (list): List of references. Format varies based on `tokenize_sentences` and `multi_references` flags.
model_type (str): Model to use for encoding sentences. Options: ['pv1', 'stsb', 'use']
pv1 - paraphrase-distilroberta-base-v1
stsb - stsb-roberta-large
use - Universal Sentence Encoder (Default)
Furthermore, you can use any model on Huggingface/SentenceTransformer that is supported by SentenceTransformer such
as `all-mpnet-base-v2` or `roberta-base`
tokenize_sentences (bool): Flag to indicate whether to tokenize the sentences in the input documents. Default: True.
multi_references (bool): Flag to indicate whether multiple references are provided. Default is False.
gpu (Union[bool, str, int, List[Union[str, int]]]): Whether to use GPU or CPU for computation.
bool -
False - CPU (Default)
True - GPU (device 0) if gpu is available else CPU
int -
n - GPU, device index n
str -
'cuda', 'gpu', 'cpu'
List[Union[str, int]] - Multiple GPUs/cpus i.e. use multiple processes when computing embeddings
batch_size (int): Batch size for encoding. Default is 32.
verbose (bool): Flag to indicate verbose output. Default is False.
Returns:
List of Scores dataclass with attributes as follows -
precision: float - precision score
recall: List[float] - List of recall scores corresponding to single/multiple references
f1: float - F1 score (between precision and average recall)
Examples of input formats:
Case 1: multi_references = False, tokenize_sentences = False
predictions: List[List[str]] - List of predictions where each prediction is a list of sentences.
references: List[List[str]] - List of references where each reference is a list of sentences.
Example:
predictions = [["This is a prediction sentence 1.", "This is a prediction sentence 2."]]
references = [["This is a reference sentence 1.", "This is a reference sentence 2."]]
Case 2: multi_references = False, tokenize_sentences = True
predictions: List[str] - List of predictions where each prediction is a document.
references: List[str] - List of references where each reference is a document.
Example:
predictions = ["This is a prediction sentence 1. This is a prediction sentence 2."]
references = ["This is a reference sentence 1. This is a reference sentence 2."]
Case 3: multi_references = True, tokenize_sentences = False
predictions: List[List[str]] - List of predictions where each prediction is a list of sentences.
references: List[List[List[str]]] - List of references where each example has multi-references (List[r1, r2, ...])
and each ri is a List of sentences.
Example:
predictions = [["Prediction sentence 1.", "Prediction sentence 2."]]
references = [
[
["Reference sentence 1.", "Reference sentence 2."], # Reference 1
["Alternative reference 1.", "Alternative reference 2."], # Reference 2
]
]
Case 4: multi_references = True, tokenize_sentences = True
predictions: List[str] - List of predictions where each prediction is a document.
references: List[List[str]] - List of references where each example has multi-references (List[r1, r2, ...]) where
each r1 is a document.
Example:
predictions = ["Prediction sentence 1. Prediction sentence 2."]
references = [
[
"Reference sentence 1. Reference sentence 2.", # Reference 1
"Alternative reference 1. Alternative reference 2.", # Reference 2
]
]
Examples:
>>> import evaluate
>>> predictions = [
["I go to School. You are stupid."],
["I love adventure sports."],
]
>>> references = [
["I go to School. You are stupid."],
["I love outdoor sports."],
]
>>> metric = evaluate.load("semf1")
>>> results = metric.compute(predictions=predictions, references=references)
>>> for score in results:
>>> print(f"Precision: {score.precision}, Recall: {score.recall}, F1: {score.f1}")
"""
def _compute_cosine_similarity(pred_embeds: NDArray, ref_embeds: NDArray) -> Tuple[float, float]:
"""
Compute precision and recall based on cosine similarity between predicted and reference embeddings.
Args:
pred_embeds (NDArray): Predicted embeddings (shape: [num_pred, embedding_dim]).
ref_embeds (NDArray): Reference embeddings (shape: [num_ref, embedding_dim]).
Returns:
Tuple[float, float]: Precision and recall based on cosine similarity scores.
Precision: Average maximum cosine similarity score per predicted embedding.
Recall: Average maximum cosine similarity score per reference embedding.
"""
# Compute cosine similarity between predicted and reference embeddings
cosine_scores = cosine_similarity(pred_embeds, ref_embeds)
# Compute precision per predicted embedding
precision_per_sentence_sim = np.max(cosine_scores, axis=-1)
# Compute recall per reference embedding
recall_per_sentence_sim = np.max(cosine_scores, axis=0)
# Calculate mean precision and recall scores
precision = np.mean(precision_per_sentence_sim).item()
recall = np.mean(recall_per_sentence_sim).item()
return precision, recall
def _validate_input_format(
tokenize_sentences: bool,
multi_references: bool,
predictions: PREDICTION_TYPE,
references: REFERENCE_TYPE,
):
"""
Validate the format of predictions and references based on specified criteria.
Args:
- tokenize_sentences (bool): Flag indicating whether sentences should be tokenized.
- multi_references (bool): Flag indicating whether multiple references are provided.
- predictions (PREDICTION_TYPE): Predictions to validate.
- references (REFERENCE_TYPE): References to validate.
Raises:
- ValueError: If the format of predictions or references does not meet the specified criteria.
Validation Criteria:
The function validates predictions and references based on the following conditions:
1. If `tokenize_sentences` is True and `multi_references` is True:
- Predictions must be a list of strings (`is_list_of_strings_at_depth(predictions, 1)`).
- References must be a list of list of strings (`is_list_of_strings_at_depth(references, 2)`).
2. If `tokenize_sentences` is False and `multi_references` is True:
- Predictions must be a list of list of strings (`is_list_of_strings_at_depth(predictions, 2)`).
- References must be a list of list of list of strings (`is_list_of_strings_at_depth(references, 3)`).
3. If `tokenize_sentences` is True and `multi_references` is False:
- Predictions must be a list of strings (`is_list_of_strings_at_depth(predictions, 1)`).
- References must be a list of strings (`is_list_of_strings_at_depth(references, 1)`).
4. If `tokenize_sentences` is False and `multi_references` is False:
- Predictions must be a list of list of strings (`is_list_of_strings_at_depth(predictions, 2)`).
- References must be a list of list of strings (`is_list_of_strings_at_depth(references, 2)`).
The function checks these conditions and raises a ValueError if any condition is not met,
indicating that predictions or references are not in the valid input format.
Note:
- `PREDICTION_TYPE` and `REFERENCE_TYPE` are defined at the top of the file
"""
if len(predictions) != len(references):
raise ValueError("Predictions and references must have the same length.")
def is_list_of_strings_at_depth(lst_obj, depth: int):
return is_nested_list_of_type(lst_obj, element_type=str, depth=depth)
if tokenize_sentences and multi_references:
condition = is_list_of_strings_at_depth(predictions, 1) and is_list_of_strings_at_depth(references, 2)
elif not tokenize_sentences and multi_references:
condition = is_list_of_strings_at_depth(predictions, 2) and is_list_of_strings_at_depth(references, 3)
elif tokenize_sentences and not multi_references:
condition = is_list_of_strings_at_depth(predictions, 1) and is_list_of_strings_at_depth(references, 1)
else:
condition = is_list_of_strings_at_depth(predictions, 2) and is_list_of_strings_at_depth(references, 2)
if not condition:
raise ValueError("Predictions are references are not valid input format. Refer to documentation.")
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class SemF1(evaluate.Metric):
_MODEL_TYPE_TO_NAME = {
"pv1": "paraphrase-distilroberta-base-v1",
"stsb": "stsb-roberta-large",
"use": "sentence-transformers/use-cmlm-multilingual",
}
def _info(self):
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=[
# F0: Multi References: False, Tokenize_Sentences = False
datasets.Features(
{
# predictions: List[List[str]] - List of predictions where prediction is a list of sentences
"predictions": datasets.Sequence(datasets.Value("string", id="sequence"), id="predictions"),
# references: List[List[str]] - List of references where each reference is a list of sentences
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
}
),
# F1: Multi References: False, Tokenize_Sentences = True
datasets.Features(
{
# predictions: List[str] - List of predictions
"predictions": datasets.Value("string", id="sequence"),
# references: List[str] - List of documents
"references": datasets.Value("string", id="sequence"),
}
),
# F2: Multi References: True, Tokenize_Sentences = False
datasets.Features(
{
# predictions: List[List[str]] - List of predictions where prediction is a list of sentences
"predictions": datasets.Sequence(datasets.Value("string", id="sequence"), id="predictions"),
# references: List[List[List[str]]] - List of multi-references.
# So each "reference" is also a list (r1, r2, ...).
# Further, each ri's are also list of sentences.
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string", id="sequence"), id="ref"), id="references"),
}
),
# F3: Multi References: True, Tokenize_Sentences = True
datasets.Features(
{
# predictions: List[str] - List of predictions
"predictions": datasets.Value("string", id="sequence"),
# references: List[List[List[str]]] - List of multi-references.
# So each "reference" is also a list (r1, r2, ...).
"references": datasets.Sequence(datasets.Value("string", id="ref"), id="references"),
}
),
],
# # Homepage of the module for documentation
# Additional links to the codebase or references
reference_urls=["https://aclanthology.org/2022.emnlp-main.49/"]
)
def _get_model_name(self, model_type: Optional[str] = None) -> str:
if model_type is None:
model_type = "use"
if model_type not in self._MODEL_TYPE_TO_NAME.keys():
return model_type
return self._MODEL_TYPE_TO_NAME[model_type]
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
import nltk
nltk.download("punkt", quiet=True)
# if not nltk.data.find("tokenizers/punkt"): # TODO: check why it is not working
# pass
def _compute(
self,
predictions,
references,
model_type: Optional[str] = None,
tokenize_sentences: bool = True,
multi_references: bool = False,
gpu: DEVICE_TYPE = False,
batch_size: int = 32,
verbose: bool = False,
) -> List[Scores]:
"""
Compute precision, recall, and F1 scores for given predictions and references.
:param predictions
:param references
:param model_type: Type of model to use for encoding.
Options: [pv1, stsb, use]
pv1 - paraphrase-distilroberta-base-v1
stsb - stsb-roberta-large
use - Universal Sentence Encoder (Default)
Furthermore, you can use any model on Huggingface/SentenceTransformer that is supported by
SentenceTransformer.
:param tokenize_sentences: Flag to sentence tokenize the document.
:param multi_references: Flag to indicate multiple references.
:param gpu: GPU device to use.
:param batch_size: Batch size for encoding.
:param verbose: Flag to indicate verbose output.
:return: List of Scores dataclass with precision, recall, and F1 scores.
"""
# Note: I have to specifically handle this case because the library considers the feature corresponding to
# this case (F2) as the feature for the other case (F0) i.e. it can't make any distinction between
# List[str] and List[List[str]]
if not tokenize_sentences and multi_references:
references = [[eval(ref) for ref in mul_ref_ex] for mul_ref_ex in references]
# Validate inputs corresponding to flags
_validate_input_format(tokenize_sentences, multi_references, predictions, references)
# Get GPU
device = get_gpu(gpu)
if verbose:
print(f"Using devices: {device}")
# Get the encoder model
model_name = self._get_model_name(model_type)
encoder = get_encoder(model_name, device=device, batch_size=batch_size, verbose=verbose)
# We'll handle the single reference and multi-reference case same way. So change the data format accordingly
if not multi_references:
references = [[ref] for ref in references]
# Tokenize sentences if required
if tokenize_sentences:
predictions = [nltk.tokenize.sent_tokenize(pred) for pred in predictions]
references = [[nltk.tokenize.sent_tokenize(ref) for ref in refs] for refs in references]
# Flatten the data for batch processing
all_sentences = flatten_list(predictions) + flatten_list(references)
# Get num of sentences to get the corresponding embeddings
prediction_sentences_count = [len(pred) for pred in predictions]
reference_sentences_count = [[len(ref) for ref in refs] for refs in references]
# Note: This is the most optimal way of doing it
# Encode all sentences in one go
embeddings = encoder.encode(all_sentences)
# Get embeddings corresponding to predictions and references
pred_embeddings = slice_embeddings(embeddings, prediction_sentences_count)
ref_embeddings = slice_embeddings(embeddings[sum(prediction_sentences_count):], reference_sentences_count)
# Init output scores
results = []
# Compute scores
for preds, refs in zip(pred_embeddings, ref_embeddings):
# Precision: Concatenate all the sentences in all the references
concat_refs = np.concatenate(refs, axis=0)
precision, _ = _compute_cosine_similarity(preds, concat_refs)
precision = np.clip(precision, a_min=0.0, a_max=1.0).item()
# Recall: Compute individually for each reference
recall_scores = [_compute_cosine_similarity(r_embeds, preds) for r_embeds in refs]
recall_scores = [np.clip(r_scores, 0.0, 1.0).item() for (r_scores, _) in recall_scores]
results.append(Scores(precision, recall_scores))
return results
|