File size: 2,186 Bytes
5a3dfd3
0774187
 
5a3dfd3
 
 
 
e2aae4e
5a3dfd3
b483613
 
5a3dfd3
03898c7
b179895
7422b24
5a3dfd3
be469ef
03898c7
 
 
 
 
 
 
 
 
76bbdc4
03898c7
5a3dfd3
8a6d741
19dac07
9ba6616
ddbdbba
03898c7
a01ad06
8ce9b88
a01ad06
5a3dfd3
68945d9
48e631c
5a3dfd3
7394ae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
os.system("gdown https://drive.google.com/uc?id=1-95IOJ-2y9BtmABiffIwndPqNZD_gLnV")
os.system("unzip big-lama.zip")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
os.mkdir("data")
os.mkdir("dataout")
model = hub.Module(name='U2Net')
def infer(img,mask,option):
  img = ImageOps.contain(img, (700,700))
  width, height = img.size
  img.save("./data/data.png")
  if option == "automatic (U2net)":
      result = model.Segmentation(
          images=[cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)],
          paths=None,
          batch_size=1,
          input_size=320,
          output_dir='output',
          visualization=True)
      im = Image.fromarray(result[0]['mask'])
  else:
      mask = mask.resize((width,height))
      im = mask
  im.save("./data/data_mask.png")
  os.system('python predict.py model.path=/home/user/app/big-lama/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
  return "./dataout/data_mask.png",im
  
inputs = [gr.inputs.Image(type='pil', label="Original Image"),gr.inputs.Image(type='pil',source="canvas", label="Mask",invert_colors=True),gr.inputs.Radio(choices=["automatic (U2net)","manual"], type="value", default="manual", label="Masking option")]
outputs = [gr.outputs.Image(type="file",label="output"),gr.outputs.Image(type="pil",label="Mask")]
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
examples = [
  ['person512.png',"canvas.png","automatic (U2net)"],
  ['person512.png',"maskexam.png","manual"]
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch(enable_queue=True,cache_examples=True)