File size: 7,894 Bytes
53a64af 03a5680 53a64af 4662cb9 db80485 53a64af db80485 53a64af db80485 53a64af db80485 07dcaa0 db80485 07dcaa0 db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af db80485 53a64af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
os.system('pip install gradio seaborn scipy scikit-learn openpyxl networkx pydantic==1.10.0')
from pydantic import BaseModel, ConfigDict
class YourModel(BaseModel):
class Config:
arbitrary_types_allowed = True
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import gradio as gr
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score
from itertools import combinations
import tempfile
# Clase para el modelo de regresión
class RegressionModel:
def __init__(self, degree=1):
self.degree = degree
self.model = LinearRegression()
self.poly = PolynomialFeatures(degree=degree, include_bias=False)
def fit(self, X, y):
X_poly = self.poly.fit_transform(X)
self.model.fit(X_poly, y)
def predict(self, X):
X_poly = self.poly.transform(X)
return self.model.predict(X_poly)
def r2_score(self, X, y):
y_pred = self.predict(X)
return r2_score(y, y_pred)
# Clase para el diseño experimental
class ExperimentalDesign:
def __init__(self, regression_degree=1):
self.pb_design = None
self.bb_design = None
self.factor_values = None
self.variable1_values = None
self.variable2_values = None
self.active_factors = None
self.regression_degree = regression_degree
def set_design(self, pb_design, bb_design):
self.pb_design = pb_design
self.bb_design = bb_design
def set_factors(self, factor_values):
self.factor_values = factor_values
def set_dependent_variables(self, variable1_values, variable2_values):
self.variable1_values = variable1_values
self.variable2_values = variable2_values
def set_active_factors(self, active_factors):
self.active_factors = active_factors
def fit_models(self):
active_columns = [i for i, factor in enumerate(self.factor_values.keys()) if factor in self.active_factors]
X = self.pb_design[:, active_columns]
self.model_variable1 = RegressionModel(degree=self.regression_degree)
self.model_variable2 = RegressionModel(degree=self.regression_degree)
self.model_variable1.fit(X, self.variable1_values)
self.model_variable2.fit(X, self.variable2_values)
self.r2_variable1 = self.model_variable1.r2_score(X, self.variable1_values)
self.r2_variable2 = self.model_variable2.r2_score(X, self.variable2_values)
# Clase para el análisis de teoría de grafos
class GraphTheoryAnalysis:
def __init__(self, experiment):
self.experiment = experiment
self.graph = nx.Graph()
self.all_factors = None
def set_matrices_and_values(self):
self.all_factors = list(self.experiment.factor_values.keys())
def build_graph(self, level=3):
if level > len(self.all_factors):
level = len(self.all_factors) # Ajustar el nivel al número de factores disponibles
for pair in combinations(self.all_factors, level):
if len(pair) >= 2: # Asegurarse de que hay suficientes elementos para formar un par
self.experiment.set_active_factors(list(pair))
self.experiment.fit_models()
r2 = (self.experiment.r2_variable1 + self.experiment.r2_variable2) / 2
self.graph.add_edge(pair[0], pair[1], weight=r2)
def visualize_graph(self, style='Style 1'):
pos = nx.spring_layout(self.graph)
plt.figure(figsize=(10, 8))
# Estilos para el grafo
if style == 'Style 1':
node_color = 'lightblue'
edge_color = 'gray'
node_size = 3000
font_size = 12
elif style == 'Style 2':
node_color = 'lightgreen'
edge_color = 'purple'
node_size = 2500
font_size = 10
elif style == 'Style 3':
node_color = 'orange'
edge_color = 'black'
node_size = 3500
font_size = 14
elif style == 'Style 4':
node_color = 'red'
edge_color = 'blue'
node_size = 2800
font_size = 12
nx.draw_networkx_nodes(self.graph, pos, node_size=node_size, node_color=node_color)
nx.draw_networkx_labels(self.graph, pos, font_size=font_size)
edge_weights = [self.graph[u][v]['weight'] for u, v in self.graph.edges()]
nx.draw_networkx_edges(self.graph, pos, width=edge_weights, edge_color=edge_color)
edge_labels = nx.get_edge_attributes(self.graph, 'weight')
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels, font_size=font_size)
plt.title(f"Grafo de relaciones entre factores basado en R² ({style})")
plt.axis('off')
plt.tight_layout()
# Guardar la imagen temporalmente usando tempfile
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
plt.savefig(temp_file.name)
plt.close()
return temp_file.name
# Definición de la interfaz de Gradio
def analyze_design(level, pb_design, bb_design, variable1_values, variable2_values, style):
experiment = ExperimentalDesign(regression_degree=2)
optimizer = GraphTheoryAnalysis(experiment)
factor_values = {
'X1': [1, 5],
'X2': [0.05, 0.5],
'X3': [0.1, 1],
'X4': [0.05, 0.5]
}
experiment.set_design(np.array(pb_design), np.array(bb_design))
experiment.set_factors(factor_values)
experiment.set_dependent_variables(np.array(variable1_values), np.array(variable2_values))
optimizer.set_matrices_and_values()
optimizer.build_graph(level=level)
graph_image_path = optimizer.visualize_graph(style=style)
return graph_image_path, bb_design
# Matriz Plackett-Burman (por defecto)
default_pb_design = [
[+1, -1, -1, +1],
[+1, -1, +1, +1],
[+1, +1, -1, -1],
[-1, +1, -1, +1],
[+1, +1, +1, -1],
[-1, +1, +1, -1],
[-1, -1, +1, +1],
[-1, -1, -1, -1]
]
# Matriz Box-Behnken (por defecto)
default_bb_design = [
[-1, -1, 0, 0],
[1, -1, 0, 0],
[-1, 1, 0, 0],
[1, 1, 0, 0],
[-1, 0, -1, 0],
[1, 0, -1, 0],
[-1, 0, 1, 0],
[1, 0, 1, 0],
[-1, 0, 0, -1],
[1, 0, 0, -1],
[-1, 0, 0, 1],
[1, 0, 0, 1],
[0, -1, -1, 0],
[0, 1, -1, 0],
[0, -1, 1, 0],
[0, 1, 1, 0],
[0, -1, 0, -1],
[0, 1, 0, -1],
[0, -1, 0, 1],
[0, 1, 0, 1],
[0, 0, -1, -1],
[0, 0, 1, -1],
[0, 0, -1, 1],
[0, 0, 1, 1],
[0, 0, 0, 0]
]
# Valores por defecto para las variables dependientes
default_variable1_values = [0.066, 0.061, 0.155, 0.209, 0.158, 0.014, 0.055, 0.007]
default_variable2_values = [0.362, 0.856, 0.177, 0.261, 0.946, 0.695, 0.892, 0.084]
# Interfaz de Gradio
interface = gr.Interface(
fn=analyze_design,
inputs=[
gr.Slider(1, 4, step=1, label="Level of Combination (1 to 4)"),
gr.Dataframe(headers=["X1", "X2", "X3", "X4"], value=default_pb_design, label="Matrix 1 (Plackett-Burman)"),
gr.Dataframe(headers=["X1", "X2", "X3", "X4"], value=default_bb_design, label="Matrix 2 (Box-Behnken)"),
gr.Dataframe(headers=["Variable 1"], value=[[val] for val in default_variable1_values], label="Variable 1 Values"),
gr.Dataframe(headers=["Variable 2"], value=[[val] for val in default_variable2_values], label="Variable 2 Values"),
gr.Dropdown(["Style 1", "Style 2", "Style 3", "Style 4"], label="Graph Style", value="Style 1")
],
outputs=["image", "dataframe"],
title="Graph Theory Analysis for Experimental Design",
description="Analyze and visualize the relationships between factors in an experimental design using graph theory."
)
# Ejecutar la interfaz
interface.launch(share=True)
|