File size: 7,894 Bytes
53a64af
03a5680
53a64af
 
4662cb9
db80485
 
 
 
53a64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db80485
53a64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db80485
 
53a64af
 
 
 
 
 
 
 
 
 
 
db80485
 
 
07dcaa0
db80485
 
07dcaa0
 
 
db80485
53a64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db80485
53a64af
db80485
53a64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db80485
53a64af
db80485
53a64af
 
db80485
53a64af
db80485
53a64af
 
 
 
 
 
 
 
 
 
 
 
 
db80485
53a64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db80485
 
 
 
 
 
53a64af
db80485
 
 
53a64af
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
os.system('pip install gradio seaborn scipy scikit-learn openpyxl networkx pydantic==1.10.0')

from pydantic import BaseModel, ConfigDict

class YourModel(BaseModel):
    class Config:
        arbitrary_types_allowed = True

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import gradio as gr
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score
from itertools import combinations
import tempfile

# Clase para el modelo de regresión
class RegressionModel:
    def __init__(self, degree=1):
        self.degree = degree
        self.model = LinearRegression()
        self.poly = PolynomialFeatures(degree=degree, include_bias=False)

    def fit(self, X, y):
        X_poly = self.poly.fit_transform(X)
        self.model.fit(X_poly, y)

    def predict(self, X):
        X_poly = self.poly.transform(X)
        return self.model.predict(X_poly)

    def r2_score(self, X, y):
        y_pred = self.predict(X)
        return r2_score(y, y_pred)

# Clase para el diseño experimental
class ExperimentalDesign:
    def __init__(self, regression_degree=1):
        self.pb_design = None
        self.bb_design = None
        self.factor_values = None
        self.variable1_values = None
        self.variable2_values = None
        self.active_factors = None
        self.regression_degree = regression_degree

    def set_design(self, pb_design, bb_design):
        self.pb_design = pb_design
        self.bb_design = bb_design

    def set_factors(self, factor_values):
        self.factor_values = factor_values

    def set_dependent_variables(self, variable1_values, variable2_values):
        self.variable1_values = variable1_values
        self.variable2_values = variable2_values

    def set_active_factors(self, active_factors):
        self.active_factors = active_factors

    def fit_models(self):
        active_columns = [i for i, factor in enumerate(self.factor_values.keys()) if factor in self.active_factors]
        X = self.pb_design[:, active_columns]

        self.model_variable1 = RegressionModel(degree=self.regression_degree)
        self.model_variable2 = RegressionModel(degree=self.regression_degree)

        self.model_variable1.fit(X, self.variable1_values)
        self.model_variable2.fit(X, self.variable2_values)

        self.r2_variable1 = self.model_variable1.r2_score(X, self.variable1_values)
        self.r2_variable2 = self.model_variable2.r2_score(X, self.variable2_values)

# Clase para el análisis de teoría de grafos
class GraphTheoryAnalysis:
    def __init__(self, experiment):
        self.experiment = experiment
        self.graph = nx.Graph()
        self.all_factors = None

    def set_matrices_and_values(self):
        self.all_factors = list(self.experiment.factor_values.keys())

    def build_graph(self, level=3):
        if level > len(self.all_factors):
            level = len(self.all_factors)  # Ajustar el nivel al número de factores disponibles

        for pair in combinations(self.all_factors, level):
            if len(pair) >= 2:  # Asegurarse de que hay suficientes elementos para formar un par
                self.experiment.set_active_factors(list(pair))
                self.experiment.fit_models()
                r2 = (self.experiment.r2_variable1 + self.experiment.r2_variable2) / 2
                self.graph.add_edge(pair[0], pair[1], weight=r2)

    def visualize_graph(self, style='Style 1'):
        pos = nx.spring_layout(self.graph)
        plt.figure(figsize=(10, 8))
        
        # Estilos para el grafo
        if style == 'Style 1':
            node_color = 'lightblue'
            edge_color = 'gray'
            node_size = 3000
            font_size = 12
        elif style == 'Style 2':
            node_color = 'lightgreen'
            edge_color = 'purple'
            node_size = 2500
            font_size = 10
        elif style == 'Style 3':
            node_color = 'orange'
            edge_color = 'black'
            node_size = 3500
            font_size = 14
        elif style == 'Style 4':
            node_color = 'red'
            edge_color = 'blue'
            node_size = 2800
            font_size = 12

        nx.draw_networkx_nodes(self.graph, pos, node_size=node_size, node_color=node_color)
        nx.draw_networkx_labels(self.graph, pos, font_size=font_size)

        edge_weights = [self.graph[u][v]['weight'] for u, v in self.graph.edges()]
        nx.draw_networkx_edges(self.graph, pos, width=edge_weights, edge_color=edge_color)

        edge_labels = nx.get_edge_attributes(self.graph, 'weight')
        nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels, font_size=font_size)

        plt.title(f"Grafo de relaciones entre factores basado en R² ({style})")
        plt.axis('off')
        plt.tight_layout()
        
        # Guardar la imagen temporalmente usando tempfile
        temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        plt.savefig(temp_file.name)
        plt.close()
        
        return temp_file.name

# Definición de la interfaz de Gradio
def analyze_design(level, pb_design, bb_design, variable1_values, variable2_values, style):
    experiment = ExperimentalDesign(regression_degree=2)
    optimizer = GraphTheoryAnalysis(experiment)
    
    factor_values = {
        'X1': [1, 5],
        'X2': [0.05, 0.5],
        'X3': [0.1, 1],
        'X4': [0.05, 0.5]
    }

    experiment.set_design(np.array(pb_design), np.array(bb_design))
    experiment.set_factors(factor_values)
    experiment.set_dependent_variables(np.array(variable1_values), np.array(variable2_values))

    optimizer.set_matrices_and_values()
    optimizer.build_graph(level=level)
    graph_image_path = optimizer.visualize_graph(style=style)
    return graph_image_path, bb_design

# Matriz Plackett-Burman (por defecto)
default_pb_design = [
    [+1, -1, -1, +1],
    [+1, -1, +1, +1],
    [+1, +1, -1, -1],
    [-1, +1, -1, +1],
    [+1, +1, +1, -1],
    [-1, +1, +1, -1],
    [-1, -1, +1, +1],
    [-1, -1, -1, -1]
]

# Matriz Box-Behnken (por defecto)
default_bb_design = [
    [-1, -1, 0, 0],
    [1, -1, 0, 0],
    [-1, 1, 0, 0],
    [1, 1, 0, 0],
    [-1, 0, -1, 0],
    [1, 0, -1, 0],
    [-1, 0, 1, 0],
    [1, 0, 1, 0],
    [-1, 0, 0, -1],
    [1, 0, 0, -1],
    [-1, 0, 0, 1],
    [1, 0, 0, 1],
    [0, -1, -1, 0],
    [0, 1, -1, 0],
    [0, -1, 1, 0],
    [0, 1, 1, 0],
    [0, -1, 0, -1],
    [0, 1, 0, -1],
    [0, -1, 0, 1],
    [0, 1, 0, 1],
    [0, 0, -1, -1],
    [0, 0, 1, -1],
    [0, 0, -1, 1],
    [0, 0, 1, 1],
    [0, 0, 0, 0]
]

# Valores por defecto para las variables dependientes
default_variable1_values = [0.066, 0.061, 0.155, 0.209, 0.158, 0.014, 0.055, 0.007]
default_variable2_values = [0.362, 0.856, 0.177, 0.261, 0.946, 0.695, 0.892, 0.084]

# Interfaz de Gradio
interface = gr.Interface(
    fn=analyze_design,
    inputs=[
        gr.Slider(1, 4, step=1, label="Level of Combination (1 to 4)"),
        gr.Dataframe(headers=["X1", "X2", "X3", "X4"], value=default_pb_design, label="Matrix 1 (Plackett-Burman)"),
        gr.Dataframe(headers=["X1", "X2", "X3", "X4"], value=default_bb_design, label="Matrix 2 (Box-Behnken)"),
        gr.Dataframe(headers=["Variable 1"], value=[[val] for val in default_variable1_values], label="Variable 1 Values"),
        gr.Dataframe(headers=["Variable 2"], value=[[val] for val in default_variable2_values], label="Variable 2 Values"),
        gr.Dropdown(["Style 1", "Style 2", "Style 3", "Style 4"], label="Graph Style", value="Style 1")
    ],
    outputs=["image", "dataframe"],
    title="Graph Theory Analysis for Experimental Design",
    description="Analyze and visualize the relationships between factors in an experimental design using graph theory."
)

# Ejecutar la interfaz
interface.launch(share=True)