File size: 67,735 Bytes
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
 
 
 
 
e118086
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
 
 
faff2dc
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
 
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
eff2de4
 
 
 
 
 
 
 
faff2dc
eff2de4
faff2dc
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
 
 
 
eff2de4
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
e118086
 
 
 
 
 
 
 
 
faff2dc
e118086
 
 
 
 
 
 
 
 
 
faff2dc
 
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
 
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
e118086
 
 
 
 
 
 
 
 
faff2dc
e118086
faff2dc
e118086
faff2dc
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
 
 
 
 
eff2de4
e118086
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
eff2de4
e118086
eff2de4
 
 
e118086
 
 
 
 
 
 
 
 
 
 
faff2dc
e118086
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
 
 
 
 
 
 
 
faff2dc
 
 
 
e118086
faff2dc
eff2de4
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
 
 
 
 
 
 
 
 
 
 
eff2de4
e118086
 
 
 
 
 
eff2de4
e118086
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2de4
 
faff2dc
 
 
 
 
 
eff2de4
faff2dc
 
 
 
 
 
 
 
 
eff2de4
 
 
faff2dc
eff2de4
 
faff2dc
eff2de4
faff2dc
 
 
eff2de4
 
 
faff2dc
eff2de4
faff2dc
eff2de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
 
faff2dc
 
 
 
 
 
 
 
e118086
faff2dc
 
 
e118086
 
 
faff2dc
 
 
e118086
faff2dc
 
 
 
 
 
 
 
 
 
e118086
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e118086
faff2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
'''
HEART Gradio Example App

To run: 
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''

import torch
import numpy as np
import pandas as pd
# from carbon_theme import Carbon

import gradio as gr
import os

css = """
.input-image { margin: auto !important }
.small-font span{
 font-size: 0.6em;
}
.df-padding {
    padding-left: 50px !important;
    padding-right: 50px !important;
}

.output-image, img {
    border-radius: 0px !important;
    margin: auto !important;
} 
"""
def update_patch_sliders(*args):
    from maite.protocols import HasDataImage, is_typed_dict
    
    x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image = args
    
    if dataset_type == "Example XView":
        from maite import load_dataset
        import torchvision
        jatic_dataset = load_dataset(
            provider="huggingface",
            dataset_name="CDAO/xview-subset-classification",
            task="image-classification",
            split="test",
        )
        IMAGE_H, IMAGE_W = 224, 224
        transform = torchvision.transforms.Compose(
            [  
                torchvision.transforms.Resize((IMAGE_H, IMAGE_W)),
                torchvision.transforms.ToTensor(),
            ]
        )  
        jatic_dataset.set_transform(lambda x: {"image": transform(x["image"]), "label": x["label"]})
        image = {'image': [i['image'].numpy() for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}
        image = (image['image'][0].transpose(1,2,0)*255).astype(np.uint8)
    elif dataset_type=="huggingface":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            drop_labels=False
        )
        
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}
    elif dataset_type=="torchvision":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}  
    elif dataset_type=="Example CIFAR10":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider="torchvision",
            dataset_name="CIFAR10",
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = np.array(jatic_dataset[0]['image'])
    elif dataset_type=="COCO":
        from torchvision.transforms import transforms
        import requests
        from PIL import Image
        NUMBER_CHANNELS = 3
        INPUT_SHAPE = (NUMBER_CHANNELS, 640, 640)

        transform = transforms.Compose([
                transforms.Resize(INPUT_SHAPE[1], interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(INPUT_SHAPE[1]),
                transforms.ToTensor()
            ])

        urls = ['http://images.cocodataset.org/val2017/000000039769.jpg']

        coco_images = []
        for url in urls:
            im = Image.open(requests.get(url, stream=True).raw)
            im = transform(im).numpy()
            coco_images.append(im)
        image = np.array(coco_images)*255
        image = image[0].transpose(1,2,0).astype(np.uint8)
        
    if is_typed_dict(image, HasDataImage):
        image = image['image']
    
    if isinstance(image, list):
        image = image[0]
         
    height = image.shape[0]
    width = image.shape[1]
    
    max_patch = min(height, width)
    if patch_dim > max_patch:
        patch_dim = max_patch
    
    max_x = width - (patch_dim) 
    max_y = height - (patch_dim)
    
    max_x = max_x if max_x >= 0 else 0
    max_y = max_y if max_y >= 0 else 0
    
    if x_location > max_x:
        x_location = max_x
    if y_location > max_y:
        y_location = max_y
    
    return [gr.Slider(maximum=max_patch, step=1), gr.Slider(maximum=max_x, value=x_location, step=1), gr.Slider(maximum=max_y, value=y_location, step=1)]

def preview_patch_location(*args):
    '''
    Create a gallery of images with a sample patch applied
    '''
    import cv2
    from maite.protocols import HasDataImage, is_typed_dict

    x_location, y_location, patch_dim = int(args[0]), int(args[1]), int(args[2])

    dataset_type = args[-4]
    dataset_path = args[-3]
    dataset_split = args[-2]
    image = args[-1]

    if dataset_type == "Example XView":
        from maite import load_dataset
        import torchvision
        jatic_dataset = load_dataset(
            provider="huggingface",
            dataset_name="CDAO/xview-subset-classification",
            task="image-classification",
            split="test",
        )
        IMAGE_H, IMAGE_W = 224, 224
        transform = torchvision.transforms.Compose(
            [  
                torchvision.transforms.Resize((IMAGE_H, IMAGE_W)),
                torchvision.transforms.ToTensor(),
            ]
        )  
        jatic_dataset.set_transform(lambda x: {"image": transform(x["image"]), "label": x["label"]})
        image = {'image': [i['image'].numpy() for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}
        image = (image['image'][0].transpose(1,2,0)*255).astype(np.uint8)
    elif dataset_type=="huggingface":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            drop_labels=False
        )
        
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}
    elif dataset_type=="torchvision":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}  
    elif dataset_type=="Example CIFAR10":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider="torchvision",
            dataset_name="CIFAR10",
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = np.array(jatic_dataset[0]['image'])
    elif dataset_type=="COCO":
        from torchvision.transforms import transforms
        import requests
        from PIL import Image
        NUMBER_CHANNELS = 3
        INPUT_SHAPE = (NUMBER_CHANNELS, 640, 640)

        transform = transforms.Compose([
                transforms.Resize(INPUT_SHAPE[1], interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(INPUT_SHAPE[1]),
                transforms.ToTensor()
            ])

        urls = ['http://images.cocodataset.org/val2017/000000039769.jpg']

        coco_images = []
        for url in urls:
            im = Image.open(requests.get(url, stream=True).raw)
            im = transform(im).numpy()
            coco_images.append(im)
        image = np.array(coco_images)*255
        image = image[0].transpose(1,2,0).astype(np.uint8)
        
    if is_typed_dict(image, HasDataImage):
        image = image['image']
    
    if isinstance(image, list):
        image = image[0]

    p0 = x_location, y_location
    p1 =  x_location + (patch_dim-1), y_location + (patch_dim-1)
    image = cv2.rectangle(cv2.UMat(image), p0, p1, (255,165,0), cv2.FILLED).get()
    
    return image

def extract_predictions(predictions_, conf_thresh):
    coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 
        'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 
        'teddy bear', 'hair drier', 'toothbrush']
    # Get the predicted class
    predictions_class = [coco_labels[i] for i in list(predictions_["labels"])]
    #  print("\npredicted classes:", predictions_class)
    if len(predictions_class) < 1:
        return [], [], []
    # Get the predicted bounding boxes
    predictions_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(predictions_["boxes"])]

    # Get the predicted prediction score
    predictions_score = list(predictions_["scores"])
    # print("predicted score:", predictions_score)

    # Get a list of index with score greater than threshold
    threshold = conf_thresh
    predictions_t = [predictions_score.index(x) for x in predictions_score if x > threshold]
    if len(predictions_t) > 0:
        predictions_t = predictions_t  # [-1] #indices where score over threshold
    else:
        # no predictions esxceeding threshold
        return [], [], []
    # predictions in score order
    predictions_boxes = [predictions_boxes[i] for i in predictions_t]
    predictions_class = [predictions_class[i] for i in predictions_t]
    predictions_scores = [predictions_score[i] for i in predictions_t]
    return predictions_class, predictions_boxes, predictions_scores

def plot_image_with_boxes(img, boxes, pred_cls, title):
    import cv2  
    text_size = 1
    text_th = 2
    rect_th = 1

    sections = []
    for i in range(len(boxes)):
        cv2.rectangle(img, (int(boxes[i][0][0]), int(boxes[i][0][1])), (int(boxes[i][1][0]), int(boxes[i][1][1])),
                      color=(0, 255, 0), thickness=rect_th)
        # Write the prediction class
        cv2.putText(img, pred_cls[i], (int(boxes[i][0][0]), int(boxes[i][0][1])), cv2.FONT_HERSHEY_SIMPLEX, text_size,
                    (0, 255, 0), thickness=text_th)
        sections.append( ((int(boxes[i][0][0]),
                           int(boxes[i][0][1]),
                           int(boxes[i][1][0]), 
                           int(boxes[i][1][1])), (pred_cls[i])) )
    

    return img.astype(np.uint8)
    
def filter_boxes(predictions, conf_thresh):
    dictionary = {}

    boxes_list = []
    scores_list = []
    labels_list = []

    for i in range(len(predictions[0]["boxes"])):
        score = predictions[0]["scores"][i]
        if score >= conf_thresh:
            boxes_list.append(predictions[0]["boxes"][i])
            scores_list.append(predictions[0]["scores"][[i]])
            labels_list.append(predictions[0]["labels"][[i]])
            
    dictionary["boxes"] = np.vstack(boxes_list)
    dictionary["scores"] = np.hstack(scores_list)
    dictionary["labels"] = np.hstack(labels_list)

    y = [dictionary]

    return y

def basic_cifar10_model():
    '''
    Load an example CIFAR10 model
    '''
    from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
    
    labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
    path = './'
    class Model(torch.nn.Module):
            """
            Create model for pytorch.
            Here the model does not use maxpooling. Needed for certification tests.
            """

            def __init__(self):
                super(Model, self).__init__()

                self.conv = torch.nn.Conv2d(
                    in_channels=3, out_channels=16, kernel_size=(4, 4), dilation=(1, 1), padding=(0, 0), stride=(3, 3)
                )

                self.fullyconnected = torch.nn.Linear(in_features=1600, out_features=10)

                self.relu = torch.nn.ReLU()

                w_conv2d = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "W_CONV2D_NO_MPOOL_CIFAR10.npy",
                    )
                )
                b_conv2d = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "B_CONV2D_NO_MPOOL_CIFAR10.npy",
                    )
                )
                w_dense = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "W_DENSE_NO_MPOOL_CIFAR10.npy",
                    )
                )
                b_dense = np.load(
                    os.path.join(
                        os.path.dirname(path),
                        "utils/resources/models",
                        "B_DENSE_NO_MPOOL_CIFAR10.npy",
                    )
                )

                self.conv.weight = torch.nn.Parameter(torch.Tensor(w_conv2d))
                self.conv.bias = torch.nn.Parameter(torch.Tensor(b_conv2d))
                self.fullyconnected.weight = torch.nn.Parameter(torch.Tensor(w_dense))
                self.fullyconnected.bias = torch.nn.Parameter(torch.Tensor(b_dense))

            # pylint: disable=W0221
            # disable pylint because of API requirements for function
            def forward(self, x):
                """
                Forward function to evaluate the model
                :param x: Input to the model
                :return: Prediction of the model
                """
                x = self.conv(x)
                x = self.relu(x)
                x = x.reshape(-1, 1600)
                x = self.fullyconnected(x)
                return x

    # Define the network
    model = Model()

    # Define a loss function and optimizer
    loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

    # Get classifier
    jptc = JaticPyTorchClassifier(
        model=model, loss=loss_fn, optimizer=optimizer, input_shape=(3, 32, 32), nb_classes=10, clip_values=(0, 1), labels=labels
    )
    return jptc

def det_evasion_evaluate(*args):
    '''
    Run a detection task evaluation
    '''
    
    attack = args[0]
    model_type = args[1]
    
    box_thresh = args[-3]
    dataset_type = args[-2]
    image = args[-1]
    
    if dataset_type == "COCO":
        from torchvision.transforms import transforms
        import requests
        from PIL import Image
        NUMBER_CHANNELS = 3
        INPUT_SHAPE = (NUMBER_CHANNELS, 640, 640)

        transform = transforms.Compose([
                transforms.Resize(INPUT_SHAPE[1], interpolation=transforms.InterpolationMode.BICUBIC),
                transforms.CenterCrop(INPUT_SHAPE[1]),
                transforms.ToTensor()
            ])

        urls = ['http://images.cocodataset.org/val2017/000000039769.jpg',
        'http://images.cocodataset.org/val2017/000000397133.jpg',
        'http://images.cocodataset.org/val2017/000000037777.jpg',
        'http://images.cocodataset.org/val2017/000000454661.jpg',
        'http://images.cocodataset.org/val2017/000000094852.jpg']

        coco_images = []
        for url in urls:
            im = Image.open(requests.get(url, stream=True).raw)
            im = transform(im).numpy()
            coco_images.append(im)
        image = np.array(coco_images)*255  
        
    if model_type == "YOLOv5":
        from heart_library.estimators.object_detection.pytorch_yolo import JaticPyTorchYolo
        coco_labels = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
            'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
            'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
            'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
            'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
            'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 
            'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 
            'teddy bear', 'hair drier', 'toothbrush']
        detector = JaticPyTorchYolo(device_type='cpu',
                            input_shape=(3, 640, 640),
                            clip_values=(0, 255), 
                            attack_losses=("loss_total", "loss_cls",
                                        "loss_box",
                                        "loss_obj"),
                            labels=coco_labels)
    
    if attack=="PGD":
        
        from art.attacks.evasion import ProjectedGradientDescent
        from heart_library.attacks.attack import JaticAttack
        from heart_library.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict
        
        pgd_attack = ProjectedGradientDescent(estimator=detector, max_iter=args[7], eps=args[8],
                                                 eps_step=args[9], targeted=args[10]!="")
        attack = JaticAttack(pgd_attack)
        
        benign_output = detector(image)
        
        dets = [{'boxes': benign_output.boxes[i],
            'scores': benign_output.scores[i],
            'labels': benign_output.labels[i]} for i in range(len(image))]

        y = [filter_boxes([t], 0.8)[0] for t in dets]
        if args[10]!="":
            data = {'image': image[[0]], 'label': y[-1:]}
        else:
            data = image
        
        
        output = attack.run_attack(data=data)
        adv_output = detector(output.adversarial_examples)
        out_imgs = []
        for i in range(len(output.adversarial_examples)):
            pred = {'boxes': adv_output.boxes[i],
                    'scores': adv_output.scores[i],
                    'labels': adv_output.labels[i]}
            preds_orig = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=output.adversarial_examples[i].transpose(1,2,0).copy(),
                                        boxes=preds_orig[1], pred_cls=preds_orig[0], title="Detections")
            out_imgs.append(out_img)
    
        out_imgs_benign = []
        for i in range(len(image)):
            pred = {'boxes': benign_output.boxes[i],
                    'scores': benign_output.scores[i],
                    'labels': benign_output.labels[i]}
            preds_benign = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=image[i].transpose(1,2,0).copy(),
                                        boxes=preds_benign[1], pred_cls=preds_benign[0], title="Detections")
            out_imgs_benign.append(out_img)
        
        
        image = []
        for i, img in enumerate(out_imgs_benign):
            image.append(img.astype(np.uint8))
        
        adv_imgs = []
        for i, img in enumerate(out_imgs):
            adv_imgs.append(img.astype(np.uint8))
        
        return [image, adv_imgs]

    elif attack=="Adversarial Patch":
        from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
        from heart_library.attacks.attack import JaticAttack

        batch_size = 16
        scale_min = 0.3
        scale_max = 1.0
        rotation_max = 0
        learning_rate = 5000.

        patch_attack = AdversarialPatchPyTorch(estimator=detector, rotation_max=rotation_max, patch_location=(args[8], args[9]),
                            scale_min=scale_min, scale_max=scale_max, patch_type='square',
                            learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
                            patch_shape=(3, args[10], args[10]), verbose=False, targeted=args[-4]=="Yes")
        
        attack = JaticAttack(patch_attack)
        
        benign_output = detector(image)
        
        dets = [{'boxes': benign_output.boxes[i],
            'scores': benign_output.scores[i],
            'labels': benign_output.labels[i]} for i in range(len(image))]

        if args[-4]=="Yes":
            data = {'image': image, 'label':[dets[-1] for i in image]}
        else:
            data = {'image': image, 'label': dets}
        
        output = attack.run_attack(data=data)
        adv_output = detector(output.adversarial_examples)
        out_imgs = []
        for i in range(len(output.adversarial_examples)):
            pred = {'boxes': adv_output.boxes[i],
                    'scores': adv_output.scores[i],
                    'labels': adv_output.labels[i]}
            preds_orig = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=output.adversarial_examples[i].transpose(1,2,0).copy(),
                                        boxes=preds_orig[1], pred_cls=preds_orig[0], title="Detections")
            out_imgs.append(out_img)
    
        out_imgs_benign = []
        for i in range(len(image)):
            pred = {'boxes': benign_output.boxes[i],
                    'scores': benign_output.scores[i],
                    'labels': benign_output.labels[i]}
            preds_benign = extract_predictions(pred, box_thresh)
            out_img = plot_image_with_boxes(img=image[i].transpose(1,2,0).copy(),
                                        boxes=preds_benign[1], pred_cls=preds_benign[0], title="Detections")
            out_imgs_benign.append(out_img)
        
        
        image = []
        for i, img in enumerate(out_imgs_benign):
            image.append(img.astype(np.uint8))
        
        adv_imgs = []
        for i, img in enumerate(out_imgs):
            adv_imgs.append(img.astype(np.uint8))
            
        patch, patch_mask = output.adversarial_patch
        patch_image = ((patch) * patch_mask).transpose(1,2,0).astype(np.uint8)
        return [image, adv_imgs, patch_image]

def clf_evasion_evaluate(*args):
    '''
    Run a classification task evaluation
    '''
    
    attack = args[0]
    model_type = args[1]
    model_path = args[2]
    model_channels = args[3]
    model_height = args[4]
    model_width = args[5]
    model_clip = args[6]
    
    dataset_type = args[-4]
    dataset_path = args[-3]
    dataset_split = args[-2]
    image = args[-1]
    
    if dataset_type == "Example XView":
        from maite import load_dataset
        import torchvision
        jatic_dataset = load_dataset(
            provider="huggingface",
            dataset_name="CDAO/xview-subset-classification",
            task="image-classification",
            split="test",
        )
        IMAGE_H, IMAGE_W = 224, 224
        transform = torchvision.transforms.Compose(
            [  
                torchvision.transforms.Resize((IMAGE_H, IMAGE_W)),
                torchvision.transforms.ToTensor(),
            ]
        )  
        jatic_dataset.set_transform(lambda x: {"image": transform(x["image"]), "label": x["label"]})
        image = {'image': [i['image'].numpy() for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}   
    elif dataset_type=="huggingface":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            drop_labels=False
        )
        
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}
    elif dataset_type=="torchvision":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider=dataset_type,
            dataset_name=dataset_path,
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = {'image': [i['image'] for i in jatic_dataset],
                'label': [i['label'] for i in jatic_dataset]}  
    elif dataset_type=="Example CIFAR10":
        from maite import load_dataset
        jatic_dataset = load_dataset(
            provider="torchvision",
            dataset_name="CIFAR10",
            task="image-classification",
            split=dataset_split,
            root='./data/',
            download=True
        )
        image = {'image': [i['image'] for i in jatic_dataset][:100],
                'label': [i['label'] for i in jatic_dataset][:100]}  
        
    if model_type == "Example CIFAR10":
        jptc = basic_cifar10_model()  
    elif model_type == "Example XView":
        import torchvision
        from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
        classes = {
            0:'Building',
            1:'Construction Site',
            2:'Engineering Vehicle',
            3:'Fishing Vessel',
            4:'Oil Tanker',
            5:'Vehicle Lot'
        }
        model = torchvision.models.resnet18(False)
        num_ftrs = model.fc.in_features 
        model.fc = torch.nn.Linear(num_ftrs, len(classes.keys())) 
        model.load_state_dict(torch.load('./utils/resources/models/xview_model.pt'))
        _ = model.eval()
        jptc = JaticPyTorchClassifier(
            model=model, loss = torch.nn.CrossEntropyLoss(), input_shape=(3, 224, 224),
            nb_classes=len(classes), clip_values=(0, 1), labels=list(classes.values())
        )
    elif model_type == "torchvision":
        from maite.interop.torchvision import TorchVisionClassifier 
        from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
        
        clf = TorchVisionClassifier.from_pretrained(model_path)
        loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
        jptc = JaticPyTorchClassifier(
            model=clf._model, loss=loss_fn, input_shape=(model_channels, model_height, model_width), 
            nb_classes=len(clf._labels), clip_values=(0, model_clip), labels=clf._labels
        )
    elif model_type == "huggingface":
        from maite.interop.huggingface import HuggingFaceImageClassifier 
        from heart_library.estimators.classification.pytorch import JaticPyTorchClassifier
        
        clf = HuggingFaceImageClassifier.from_pretrained(model_path)
        loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
        jptc = JaticPyTorchClassifier(
            model=clf._model, loss=loss_fn, input_shape=(model_channels, model_height, model_width), 
            nb_classes=len(clf._labels), clip_values=(0, model_clip), labels=clf._labels
        )
    
    if attack=="PGD":
        from art.attacks.evasion.projected_gradient_descent.projected_gradient_descent_pytorch import ProjectedGradientDescentPyTorch
        from heart_library.attacks.attack import JaticAttack
        from heart_library.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
        
        pgd_attack = ProjectedGradientDescentPyTorch(estimator=jptc, max_iter=args[7], eps=args[8],
                                                 eps_step=args[9], targeted=args[10]!="")
        attack = JaticAttack(pgd_attack)
        
        preds = jptc(image)
        preds = softmax(torch.from_numpy(preds.logits), dim=1)
        labels = {}
        for i, label in enumerate(jptc.get_labels()):
            labels[label] = preds[0][i]
        
        if args[10]!="":
            if is_typed_dict(image, HasDataImage):
                data = {'image': image['image'], 'label': [args[10]]*len(image['image'])}
            else:
                data = {'image': image, 'label': [args[10]]}
        else:
            data = image
        
        x_adv = attack.run_attack(data=data)
        adv_preds = jptc(x_adv.adversarial_examples)
        adv_preds = softmax(torch.from_numpy(adv_preds.logits), dim=1)
        adv_labels = {}
        for i, label in enumerate(jptc.get_labels()):
            adv_labels[label] = adv_preds[0][i]
        
        metric = AccuracyPerturbationMetric()
        metric.update(jptc, jptc.device, image, x_adv.adversarial_examples)
        clean_accuracy, robust_accuracy, perturbation_added = metric.compute()
        metrics = pd.DataFrame([[clean_accuracy, robust_accuracy, perturbation_added]],
                               columns=['clean accuracy', 'robust accuracy', 'perturbation'])

        adv_imgs = [img.transpose(1,2,0) for img in x_adv.adversarial_examples]
        if is_typed_dict(image, HasDataImage):
            image = image['image']
        if not isinstance(image, list):
            image = [image]
            
        # in case where multiple images, use argmax to get the predicted label and add as caption
        if dataset_type!="local":
            temp = []
            for i, img in enumerate(image):
                if isinstance(img, ArrayLike):
                    temp.append((img.transpose(1,2,0), str(jptc.get_labels()[np.argmax(preds[i])]) ))
                else:
                    temp.append((img, str(jptc.get_labels()[np.argmax(preds[i])]) ))
            image = temp
            
            temp = []
            for i, img in enumerate(adv_imgs):
                temp.append((img, str(jptc.get_labels()[np.argmax(adv_preds[i])]) ))
            adv_imgs = temp
        
        return [image, labels, adv_imgs, adv_labels, clean_accuracy, robust_accuracy, perturbation_added]

    elif attack=="Adversarial Patch":
        from art.attacks.evasion.adversarial_patch.adversarial_patch_pytorch import AdversarialPatchPyTorch
        from heart_library.attacks.attack import JaticAttack
        from heart_library.metrics import AccuracyPerturbationMetric
        from torch.nn.functional import softmax
        from maite.protocols import HasDataImage, is_typed_dict, ArrayLike
        
        batch_size = 16
        scale_min = 0.3
        scale_max = 1.0
        rotation_max = 0
        learning_rate = 5000.
        max_iter = 2000
        patch_shape = (3, 14, 14)
        patch_location = (18,18)

        patch_attack = AdversarialPatchPyTorch(estimator=jptc, rotation_max=rotation_max, patch_location=(args[8], args[9]),
                            scale_min=scale_min, scale_max=scale_max, patch_type='square',
                            learning_rate=learning_rate, max_iter=args[7], batch_size=batch_size,
                            patch_shape=(3, args[10], args[10]), verbose=False, targeted=args[11]!="")
        
        attack = JaticAttack(patch_attack)
        
        preds = jptc(image)
        preds = softmax(torch.from_numpy(preds.logits), dim=1)
        labels = {}
        for i, label in enumerate(jptc.get_labels()):
            labels[label] = preds[0][i]
        
        if args[11]!="":
            if is_typed_dict(image, HasDataImage):
                data = {'image': image['image'], 'label': [args[11]]*len(image['image'])}
            else:
                data = {'image': image, 'label': [args[11]]}
        else:
            data = image
        
        attack_output = attack.run_attack(data=data)
        adv_preds = jptc(attack_output.adversarial_examples)
        adv_preds = softmax(torch.from_numpy(adv_preds.logits), dim=1)
        adv_labels = {}
        for i, label in enumerate(jptc.get_labels()):
            adv_labels[label] = adv_preds[0][i]
        
        metric = AccuracyPerturbationMetric()
        metric.update(jptc, jptc.device, image, attack_output.adversarial_examples)
        clean_accuracy, robust_accuracy, perturbation_added = metric.compute()
        metrics = pd.DataFrame([[clean_accuracy, robust_accuracy, perturbation_added]],
                               columns=['clean accuracy', 'robust accuracy', 'perturbation'])

        adv_imgs = [img.transpose(1,2,0) for img in attack_output.adversarial_examples]
        if is_typed_dict(image, HasDataImage):
            image = image['image']
        if not isinstance(image, list):
            image = [image]
            
        # in case where multiple images, use argmax to get the predicted label and add as caption
        if dataset_type!="local":
            temp = []
            for i, img in enumerate(image):
                
                if isinstance(img, ArrayLike):
                    temp.append((img.transpose(1,2,0), str(jptc.get_labels()[np.argmax(preds[i])]) ))
                else:
                    temp.append((img, str(jptc.get_labels()[np.argmax(preds[i])]) ))
                
            image = temp
            
            temp = []
            for i, img in enumerate(adv_imgs):
                temp.append((img, str(jptc.get_labels()[np.argmax(adv_preds[i])]) ))
            adv_imgs = temp
            
        patch, patch_mask = attack_output.adversarial_patch
        patch_image = ((patch) * patch_mask).transpose(1,2,0)
            
        return [image, labels, adv_imgs, adv_labels, clean_accuracy, robust_accuracy, patch_image]
            
def show_model_params(model_type):
    '''
    Show model parameters based on selected model type
    '''
    if model_type!="Example CIFAR10" and model_type!="Example XView":
        return gr.Column(visible=True)
    return gr.Column(visible=False)
    
def show_dataset_params(dataset_type):
    '''
    Show dataset parameters based on dataset type
    '''
    if dataset_type=="Example CIFAR10" or dataset_type=="Example XView":
        return [gr.Column(visible=False), gr.Row(visible=False), gr.Row(visible=False)]
    elif dataset_type=="local":
        return [gr.Column(visible=True), gr.Row(visible=True), gr.Row(visible=False)]
    return [gr.Column(visible=True), gr.Row(visible=False), gr.Row(visible=True)]
  
def pgd_show_label_output(dataset_type):
    '''
    Show PGD output component based on dataset type
    '''
    if dataset_type=="local":
        return [gr.Label(visible=True), gr.Label(visible=True), gr.Number(visible=False), gr.Number(visible=False), gr.Number(visible=True)]
    return [gr.Label(visible=False), gr.Label(visible=False), gr.Number(visible=True), gr.Number(visible=True), gr.Number(visible=True)]

def pgd_update_epsilon(clip_values):
    '''
    Update max value of PGD epsilon slider based on model clip values
    '''
    if clip_values == 255:
        return gr.Slider(minimum=0.0001, maximum=255, label="Epslion", value=55) 
    return gr.Slider(minimum=0.0001, maximum=1, label="Epslion", value=0.05) 

def patch_show_label_output(dataset_type):
    '''
    Show adversarial patch output components based on dataset type
    '''
    if dataset_type=="local":
        return [gr.Label(visible=True), gr.Label(visible=True), gr.Number(visible=False), gr.Number(visible=False), gr.Number(visible=True)]
    return [gr.Label(visible=False), gr.Label(visible=False), gr.Number(visible=True), gr.Number(visible=True), gr.Number(visible=True)]

def show_target_label_dataframe(dataset_type):
    if dataset_type == "Example CIFAR10":
        return gr.Dataframe(visible=True), gr.Dataframe(visible=False)
    elif dataset_type == "Example XView":
        return gr.Dataframe(visible=False), gr.Dataframe(visible=True)
    return gr.Dataframe(visible=False), gr.Dataframe(visible=False)
    
# e.g. To use a local alternative theme: carbon_theme = Carbon()
with gr.Blocks(css=css, theme='xiaobaiyuan/theme_brief') as demo:
    gr.Markdown("<h1>HEART Adversarial Robustness Gradio Example</h1>")
    
    with gr.Tab("Classification", elem_classes="task-tab"):
        gr.Markdown("Classifying images with a set of categories.")
        
        # Model and Dataset Selection
        with gr.Row():
            # Model and Dataset type e.g. Torchvision, HuggingFace, local etc.
            with gr.Column():
                model_type = gr.Radio(label="Model type", choices=["Example CIFAR10", "Example XView", "torchvision"],
                                    value="Example CIFAR10")
                dataset_type = gr.Radio(label="Dataset", choices=["Example CIFAR10", "Example XView", "local", "torchvision", "huggingface"],
                                    value="Example CIFAR10")
            # Model parameters e.g. RESNET, VIT, input dimensions, clipping values etc.
            with gr.Column(visible=False) as model_params:
                model_path = gr.Textbox(placeholder="URL", label="Model path")
                with gr.Row():
                    with gr.Column():
                        model_channels = gr.Textbox(placeholder="Integer, 3 for RGB images", label="Input Channels", value=3)
                    with gr.Column():
                        model_width = gr.Textbox(placeholder="Integer", label="Input Width", value=640)
                with gr.Row():
                    with gr.Column():
                        model_height = gr.Textbox(placeholder="Integer", label="Input Height", value=480)
                    with gr.Column():
                        model_clip = gr.Radio(choices=[1, 255], label="Pixel clip", value=1)
            # Dataset parameters e.g. Torchvision, HuggingFace, local etc. 
            with gr.Column(visible=False) as dataset_params:
                with gr.Row() as local_image:
                    image = gr.Image(sources=['upload'], type="pil", height=150, width=150, elem_classes="input-image")
                with gr.Row() as hosted_image:
                    dataset_path = gr.Textbox(placeholder="URL", label="Dataset path")
                    dataset_split = gr.Textbox(placeholder="test", label="Dataset split")
            
            model_type.change(show_model_params, model_type, model_params)
            dataset_type.change(show_dataset_params, dataset_type, [dataset_params, local_image, hosted_image])
        
        # Attack Selection
        with gr.Row():
            
            with gr.Tab("Info"):
                gr.Markdown("This is step 1. Select the type of attack for evaluation.")
                
            with gr.Tab("White Box"):
                gr.Markdown("White box attacks assume the attacker has __full access__ to the model.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of white-box attack to evaluate.")
                
                with gr.Tab("Evasion"):
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("Projected Gradient Descent"):
                        gr.Markdown("This attack uses PGD to identify adversarial examples.")
                        
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
                                max_iter = gr.Slider(minimum=1, maximum=20, label="Max iterations", value=10, step=1)
                                eps = gr.Slider(minimum=0.03, maximum=1, label="Epslion", value=0.03) 
                                eps_steps = gr.Slider(minimum=0.003, maximum=0.99, label="Epsilon steps", value=0.003) 
                                targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
                                with gr.Accordion("Target mapping", open=False):
                                    cifar_labels = gr.Dataframe(pd.DataFrame(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'],
                                                                columns=['label']).rename_axis('target').reset_index(),
                                                                visible=True, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                    xview_labels = gr.Dataframe(pd.DataFrame(['Building', 'Construction Site', 'Engineering Vehicle', 'Fishing Vessel', 'Oil Tanker', 
                                                                            'Vehicle Lot'],
                                                                columns=['label']).rename_axis('target').reset_index(), 
                                                                visible=False, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                    
                                eval_btn_pgd = gr.Button("Evaluate")
                                model_clip.change(pgd_update_epsilon, model_clip, eps)
                                dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
                                
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=2):
                                with gr.Row():
                                    with gr.Column():
                                        original_gallery = gr.Gallery(label="Original", preview=True, height=600)
                                        benign_output = gr.Label(num_top_classes=3, visible=False)
                                        clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                                        
                                    with gr.Column():
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, height=600)
                                        adversarial_output = gr.Label(num_top_classes=3, visible=False)
                                        robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
                                        perturbation_added = gr.Number(label="Perturbation Added", precision=2)
                                        
                                dataset_type.change(pgd_show_label_output, dataset_type, [benign_output, adversarial_output, 
                                                                                     clean_accuracy, robust_accuracy, perturbation_added])
                                eval_btn_pgd.click(clf_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, eps, eps_steps, targeted, 
                                                                             dataset_type, dataset_path, dataset_split, image],
                                                    outputs=[original_gallery, benign_output, adversarial_gallery, adversarial_output, clean_accuracy,
                                                             robust_accuracy, perturbation_added], api_name='patch')
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, targeted, original_gallery, benign_output, clean_accuracy,
                                                        adversarial_gallery, adversarial_output, robust_accuracy, perturbation_added])
                            
                    with gr.Tab("Adversarial Patch"):
                        gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                with gr.Accordion('Adversarial Patch Parameters', open=False):
                                    attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
                                    max_iter = gr.Slider(minimum=1, maximum=20, label="Max iterations", value=2, step=1)
                                    patch_dim = gr.Slider(minimum=1, maximum=32, label="Patch dimension", value=6, step=1, info="The height and width of the patch") 
                                    x_location = gr.Slider(minimum=0, maximum=25, label="Location (x)", value=1, step=1, info="Shift patch left and right") 
                                    y_location = gr.Slider(minimum=0, maximum=25, label="Location (y)", value=1, step=1, info="Shift patch up and down") 
                                    targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
                                    
                                    dataset_type.change(update_patch_sliders, 
                                                      [x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
                                                      [patch_dim, x_location, y_location])
                                    image.change(update_patch_sliders, 
                                                      [x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
                                                      [patch_dim, x_location, y_location])
                                    patch_dim.release(update_patch_sliders, 
                                                      [x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
                                                      [patch_dim, x_location, y_location])
                            
                            with gr.Column(scale=1):
                                #adding in preview option for patch location
                                with gr.Accordion('Preview Patch Placement', open=False):
                                    gr.Markdown('''<i>Using the location (x and y) and patch size (height and width) controls in the <b>parameters</b> 
                                                section, you can control how the adversarial patch is positioned.</i>''')
                                    with gr.Column():
                                        test_patch_gallery = gr.Image(show_label=False, show_download_button=False, elem_classes="output-image")
                                
                                    preview_patch_loc = gr.Button('Preview Patch Placement')
                                    preview_patch_loc.click(preview_patch_location, inputs=[x_location, y_location, patch_dim,
                                                                                                dataset_type, dataset_path, dataset_split, image],
                                                                outputs = [test_patch_gallery])
                            with gr.Column(scale=1):
                                with gr.Accordion('Target Mapping', open=False):
                                    gr.Markdown('''<i>If deploying a targeted attack, use the mapping of classes
                                                to integer below to populate the <b>target label</b> box in the parameters section.</i>''')
                                    cifar_labels = gr.Dataframe(pd.DataFrame(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'],
                                                                columns=['label']).rename_axis('target').reset_index(),
                                                                visible=True, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                                    xview_labels = gr.Dataframe(pd.DataFrame(['Building', 'Construction Site', 'Engineering Vehicle', 'Fishing Vessel', 'Oil Tanker', 
                                                                            'Vehicle Lot'],
                                                                columns=['label']).rename_axis('target').reset_index(), 
                                                                visible=False, elem_classes=["small-font", "df-padding"],
                                                                type="pandas",interactive=False)
                        with gr.Row():
                            eval_btn_patch = gr.Button("Evaluate")
                            dataset_type.change(show_target_label_dataframe, dataset_type, [cifar_labels, xview_labels])
                        with gr.Row():        
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            
                            with gr.Column(scale=2):
                                original_gallery = gr.Gallery(label="Original", preview=True, height=600)
                                benign_output = gr.Label(num_top_classes=3, visible=False)
                                clean_accuracy = gr.Number(label="Clean Accuracy", precision=2)
                                
                            with gr.Column(scale=2):
                                adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, height=600)
                                adversarial_output = gr.Label(num_top_classes=3, visible=False)
                                robust_accuracy = gr.Number(label="Robust Accuracy", precision=2)
                            with gr.Column(scale=1):
                                patch_image = gr.Image(label="Adversarial Patch")
                                    
                            dataset_type.change(patch_show_label_output, dataset_type, [benign_output, adversarial_output, 
                                                                                    clean_accuracy, robust_accuracy, patch_image])
                            eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                            model_clip, max_iter, x_location, y_location, patch_dim, targeted, 
                                                                            dataset_type, dataset_path, dataset_split, image],
                                                outputs=[original_gallery, benign_output, adversarial_gallery, adversarial_output, clean_accuracy,
                                                            robust_accuracy, patch_image])
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, targeted, original_gallery, benign_output, clean_accuracy,
                                                        adversarial_gallery, adversarial_output, robust_accuracy, patch_image])
                        
                with gr.Tab("Poisoning"):
                    gr.Markdown("Coming soon.")
            
            with gr.Tab("Black Box"):
                gr.Markdown("Black box attacks assume the attacker __does not__ have full access to the model but can query it for predictions.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of black-box attack to evaluate.")
                    
                with gr.Tab("Evasion"):
                    
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("HopSkipJump"):
                        gr.Markdown("Coming soon.")
                    
                    with gr.Tab("Square Attack"):
                        gr.Markdown("Coming soon.")
                        
            with gr.Tab("AutoAttack"):
                gr.Markdown("Coming soon.")
            
            
    with gr.Tab("Object Detection"):
        gr.Markdown("Extracting objects from images and identifying their category.")
        
        # Model and Dataset Selection
        with gr.Row():
            # Model and Dataset type e.g. Torchvision, HuggingFace, local etc.
            with gr.Column():
                model_type = gr.Radio(label="Model type", choices=["YOLOv5"],
                                    value="YOLOv5")
                dataset_type = gr.Radio(label="Dataset", choices=["COCO",],
                                    value="COCO")
            
            model_type.change(show_model_params, model_type, model_params)
            dataset_type.change(show_dataset_params, dataset_type, [dataset_params, local_image])
        
        # Attack Selection
        with gr.Row():
            
            with gr.Tab("Info"):
                gr.Markdown("This is step 1. Select the type of attack for evaluation.")
                
            with gr.Tab("White Box"):
                gr.Markdown("White box attacks assume the attacker has __full access__ to the model.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of white-box attack to evaluate.")
                
                with gr.Tab("Evasion"):
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("Projected Gradient Descent"):
                        gr.Markdown("This attack uses PGD to identify adversarial examples.")
                        
                        
                        with gr.Row():
                            
                            with gr.Column(scale=1):
                                attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
                                max_iter = gr.Slider(minimum=1, maximum=10, label="Max iterations", value=4, step=1)
                                eps = gr.Slider(minimum=8, maximum=255, label="Epslion", value=8, step=1) 
                                eps_steps = gr.Slider(minimum=1, maximum=254, label="Epsilon steps", value=1, step=1) 
                                targeted = gr.Textbox(placeholder="Target label (integer)", label="Target")
                                det_threshold = gr.Slider(minimum=0.0, maximum=100, label="Detection threshold", value=0.2)
                                eval_btn_pgd = gr.Button("Evaluate")
                                model_clip.change(pgd_update_epsilon, model_clip, eps)
                                
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=3):
                                with gr.Row():
                                    with gr.Column():
                                        original_gallery = gr.Gallery(label="Original", preview=True, show_download_button=True, height=600)
                                        
                                    with gr.Column():
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, show_download_button=True, height=600)
                                        
                                eval_btn_pgd.click(det_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, eps, eps_steps, targeted, 
                                                                             det_threshold, dataset_type, image],
                                                    outputs=[original_gallery, adversarial_gallery], api_name='patch')
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, original_gallery,
                                                        adversarial_gallery])
                    with gr.Tab("Adversarial Patch"):
                        gr.Markdown("This attack crafts an adversarial patch that facilitates evasion.")
                        
                        with gr.Row():
                            with gr.Column(scale=1):
                                with gr.Accordion("Adversarial Patch Parameters", open=False):
                                    attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
                                    max_iter = gr.Slider(minimum=1, maximum=100, label="Max iterations", value=1, step=1)
                                    patch_dim = gr.Slider(minimum=1, maximum=640, label="Patch dimension", value=100, step=1, info="The height and width of the patch") 
                                    x_location = gr.Slider(minimum=0, maximum=640, label="Location (x)", value=100, step=1, info="Shift patch left and right") 
                                    y_location = gr.Slider(minimum=0, maximum=480, label="Location (y)", value=100, step=1, info="Shift patch up and down") 
                                    targeted = gr.Radio(choices=['Yes', 'No'], value='No', label="Targeted")
                                    det_threshold = gr.Slider(minimum=0.0, maximum=100, label="Detection threshold", value=0.2)
                                    
                                    dataset_type.change(update_patch_sliders, 
                                                      [x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
                                                      [patch_dim, x_location, y_location])
                                    image.change(update_patch_sliders, 
                                                      [x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
                                                      [patch_dim, x_location, y_location])
                                    patch_dim.release(update_patch_sliders, 
                                                      [x_location, y_location, patch_dim, dataset_type, dataset_path, dataset_split, image],
                                                      [patch_dim, x_location, y_location])
                            
                            with gr.Column(scale=1):
                                #adding in preview option for patch location
                                with gr.Accordion('Preview Patch Placement', open=False):
                                    gr.Markdown('''<i>Using the location (x and y) and patch size (height and width) controls in the <b>parameters</b> 
                                                section, you can control how the adversarial patch is positioned.</i>''')
                                    with gr.Column():
                                        test_patch_gallery = gr.Image(show_label=False, show_download_button=False, width=300, height=300, elem_classes=["output-image"])
                                
                                    preview_patch_loc = gr.Button('Preview Patch Placement')
                                    preview_patch_loc.click(preview_patch_location, inputs=[x_location, y_location, patch_dim,
                                                                                                dataset_type, dataset_path, dataset_split, image],
                                                                outputs = [test_patch_gallery])
                        
                        with gr.Row():
                            eval_btn_patch = gr.Button("Evaluate")
                                
                        with gr.Row():
                            # Evaluation Output. Visualisations of success/failures of running evaluation attacks.
                            with gr.Column(scale=3):
                                with gr.Row():
                                    with gr.Column(scale=2):
                                        original_gallery = gr.Gallery(label="Original", preview=True, show_download_button=True, height=600)
                                        
                                    with gr.Column(scale=2):
                                        adversarial_gallery = gr.Gallery(label="Adversarial", preview=True, show_download_button=True, height=600)
                                   
                                    with gr.Column(scale=1):     
                                        patch_image = gr.Image(label="Adversarial Patch")
                                        
                                dataset_type.change(patch_show_label_output, dataset_type, [adversarial_output, ])
                                eval_btn_patch.click(det_evasion_evaluate, inputs=[attack, model_type, model_path, model_channels, model_height, model_width,
                                                                             model_clip, max_iter, x_location, y_location, patch_dim, targeted, 
                                                                             det_threshold,dataset_type, image],
                                                    outputs=[original_gallery, adversarial_gallery, patch_image])
                        
                        with gr.Row():
                            clear_btn = gr.ClearButton([image, targeted, original_gallery,
                                                        adversarial_gallery])
                        
                with gr.Tab("Poisoning"):
                    gr.Markdown("Coming soon.")
            
            with gr.Tab("Black Box"):
                gr.Markdown("Black box attacks assume the attacker __does not__ have full access to the model but can query it for predictions.")
                
                with gr.Tab("Info"):
                    gr.Markdown("This is step 2. Select the type of black-box attack to evaluate.")
                    
                with gr.Tab("Evasion"):
                    
                    gr.Markdown("Evasion attacks are deployed to cause a model to incorrectly classify or detect items/objects in an image.")
                    
                    with gr.Tab("Info"):
                        gr.Markdown("This is step 3. Select the type of Evasion attack to evaluate.")
                    
                    with gr.Tab("HopSkipJump"):
                        gr.Markdown("Coming soon.")
                    
                    with gr.Tab("Square Attack"):
                        gr.Markdown("Coming soon.")
                        
            with gr.Tab("AutoAttack"):
                gr.Markdown("Coming soon.")


def launch_demo_via_huggingface():
    """
    Hardened Extension of Adversarial Robustness Toolbox (HEART) has not yet been opensourced to Pypi.
    Until this is completed, the HEART library must be installed via a private repository.
    This launch method gets private secretes from Huggingface and executes HEART install via pip.
    
    TODO [HEART Issue#13]: Tear down this Huggingface demo launch switch once HEART has been fully opensourced.
    """

    import os, re
    from pip._internal.cli.main import main as pipmain
    
    # Huggingface does not support LFS via external https, disable smudge
    os.putenv('GIT_LFS_SKIP_SMUDGE', '1')

    # Get protected private repository installation command from Huggingface secrets
    HEART_INSTALL=os.environ['HEART_INSTALL']
    HEART_REGEX=r"git\+https\:\/\/[a-zA-Z]{9}\:[a-zA-Z0-9\-\_]{26}\@gitlab\.jatic\.net\/jatic\/ibm\/hardened-extension-adversarial-robustness-toolbox\.git"

    # Execute pip install
    if re.match(HEART_REGEX, HEART_INSTALL):
        pipmain(['install', HEART_INSTALL])
    else:
        print(
            f"""
            The HEART library was not installed. Credentials supplied were most likely incorrect.
            Install string supplied did not match filter: {HEART_REGEX}
            """
        )
    
    demo.launch()


def launch_demo_via_local():
    """
    Default functionality of launching the Gradio app from any local development environment.
    This launch method assumes that the local environment can launch a web browser from within the
    same local environment and navigate to the local host shown in demo.launch() output.

    * Important Notes:
      - This launch mechanism will not function via Huggingface.
      - When launching via Raven, share must be set to True (Raven has no local web browser).
    """

    # during development, set debug=True
    demo.launch(show_api=False, debug=True, share=False,
                server_name="0.0.0.0", 
                server_port=7777, 
                ssl_verify=False,
                max_threads=20)


if __name__ == "__main__":

    import socket

    # Huggingface Hostname Patterns 
    HF_SPACES=[
        "alpha-heart-gradio", 
        "cdao-heart-gradio",
    ]

    # Try to describe hostname using socket. If this doesn't work, fail open as local.  
    hostname = ""

    try:
        print(f"Attempting to resolve hostname via socket.gethostname()...")
        hostname = socket.gethostname()
        print(f"Hostname resolved successfully as: {hostname}")
    except:
        print(f"Unable to resolve hostname via socket.gethostname()...")
        hostname = "local"
        print(f"Defaulting to hostname set as: local")

    if any(space in hostname for space in HF_SPACES):
        print(
            f"""
            [{hostname}] is most likely within a Huggingface Space.
            Current understood list of HF_SPACES: {HF_SPACES}
            Executing demo.launch() using <launch_demo_via_huggingface()>
            """
        )
        launch_demo_via_huggingface()
    else:
        print(
            f"""
            {hostname} is either local or uncaptured for demo.launch() switching.
            Executing demo.launch() using <launch_demo_via_local()>
            """
        )
        launch_demo_via_local()