Spaces:
Runtime error
Runtime error
File size: 9,478 Bytes
41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 b003220 8758d05 b003220 8758d05 41f2cd0 b003220 8758d05 41f2cd0 8758d05 919458a 8758d05 919458a 8758d05 919458a 41f2cd0 02b8818 8758d05 e9a20eb 919458a 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 41f2cd0 8758d05 919458a 8758d05 4de981d 8758d05 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 8758d05 41f2cd0 02b8818 41f2cd0 02b8818 8758d05 41f2cd0 02b8818 41f2cd0 919458a 8758d05 919458a 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 41f2cd0 02b8818 919458a 41f2cd0 02b8818 8758d05 919458a 41f2cd0 919458a 02b8818 41f2cd0 8758d05 919458a 8758d05 41f2cd0 8758d05 02b8818 e9a20eb 4de981d 8758d05 919458a 8758d05 919458a 8758d05 919458a 8758d05 919458a 8758d05 919458a 8758d05 919458a 8758d05 919458a 8758d05 919458a 41f2cd0 8758d05 3e9e0cc 8758d05 3e9e0cc 8758d05 b36c2f1 3e9e0cc 8758d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# %%
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
from numpy import arange
import xarray as xr
import highspy
from linopy import Model, EQUAL
import pandas as pd
import plotly.express as px
import streamlit as st
import sourced as src
st.set_page_config(layout="wide")
# you can create columns to better manage the flow of your page
# this command makes 3 columns of equal width
col1, col2, col3, col4 = st.columns(4)
col1.header("Data Input")
col4.header("Download Results")
# %%
with col1:
with open('Input_Jahr_2021.xlsx', 'rb') as f:
st.download_button('Download Excel Template', f, file_name='Input_Jahr_2021.xlsx') # Defaults to 'application/octet-stream'
#url_excel = r'Input_Jahr_2021.xlsx'
url_excel = st.file_uploader(label = 'Excel Upload')
if url_excel == None:
url_excel = r'Input_Jahr_2021.xlsx'
sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = True)
with col4:
st.write('Running with standard data')
else:
sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False)
with col4:
st.write('Running with user data')
# # %%
def timstep_aggregate(time_steps_aggregate, xr ):
return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate])
#s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)
# %%
#sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True)
# %%
#sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False)
dt = 6
# Unpack sets_dict into the workspace
t = sets_dict['t']
i = sets_dict['i']
iSto = sets_dict['iSto']
iConv = sets_dict['iConv']
iPtG = sets_dict['iPtG']
iRes = sets_dict['iRes']
iHyRes = sets_dict['iHyRes']
# Unpack params_dict into the workspace
l_co2 = params_dict['l_co2']
p_co2 = params_dict['p_co2']
D_t = timstep_aggregate(dt,params_dict['D_t'])
eff_i = params_dict['eff_i']
c_fuel_i = params_dict['c_fuel_i']
c_other_i = params_dict['c_other_i']
c_inv_i = params_dict['c_inv_i']
co2_factor_i = params_dict['co2_factor_i']
#c_var_i = params_dict['c_var_i']
s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
K_0_i = params_dict['K_0_i']
e2p_iSto = params_dict['e2p_iSto']
h_t = timstep_aggregate(dt,params_dict['h_t'])
t = D_t.get_index('t')
partial_year_factor = (8760/len(t))/dt
# # Slider for gas price [€/MWh_th]
#price_gas = st.slider(value=100, min_value=0, max_value=400, label="Natural gas price [€/MWh]", step=10)
# Slider for CO2 price [€/t]
#price_co2 = st.slider(value=0, min_value=0, max_value=400, label="CO2 price [€/t CO2eq]", step=10)
with col2:
# Slider for CO2 limit [mio. t]
l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 limit [mio. t]", step=50)
# Slider for H2 price / usevalue [€/MWH_th]
price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Hydrogen price [€/MWh]", step=10)
for i_idx in c_fuel_i.get_index('i'):
if i_idx in ['Lignite']:
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)
with col3:
# Slider for CO2 limit [mio. t]
for i_idx in c_fuel_i.get_index('i'):
if i_idx in ['Fossil Hard coal', 'Fossil Oil','Fossil Gas']:
c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)
#time_steps_aggregate = 6
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
price_co2 = 0
#technologies_no_invest = st.multiselect(label='Technolgy invest', options=i)
technologies_no_invest = ['Electrolyzer','Biomass','RoR']
# %%
### Variables
m = Model()
C_tot = m.add_variables(name = 'C_tot') # Total costs
C_op = m.add_variables(name = 'C_op', lower = 0) # Operational costs
C_inv = m.add_variables(name = 'C_inv', lower = 0) # Investment costs
K = m.add_variables(coords = [i], name = 'K', lower = 0) # Endogenous capacity
y = m.add_variables(coords = [t,i], name = 'y', lower = 0) # Electricity production --> für Elektrolyseure ausschließen
y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0) # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen
l = m.add_variables(coords = [t,i], name = 'l', lower = 0) # Storage filling level
w = m.add_variables(coords = [t], name = 'w', lower = 0) # RES curtailment
## Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)
## Costs terms for objective function
# Operational costs minus revenue for produced hydrogen
C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum()*dt*partial_year_factor == C_op, name = 'C_op_sum')
# Investment costs
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')
## Load serving
loadserve_t = m.add_constraints(((y ).sum(dims = 'i') - (w ) - y_ch.sum(dims = 'i') == D_t.sel(t = t) ), name = 'load')
## Maximum capacity limit
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name = 'max_cap')
## Maximum capacity limit
maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name = 'max_cap_invest')
## Maximum storage charging and discharging
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) + y_ch.sel(i = iSto) - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name = 'max_cha')
## Maximum electrolyzer capacity
ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG)<= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg')
## Infeed of renewables
infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) <= s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name = 'infeed')
## Maximum filling level restriction storage power plant --> Energy-to-Power-Ratio eingeführt. (JR)
maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling')
## Filling level restriction hydro reservoir --> Ist Kreisbedingung erfüllt? (JR)
filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro')
## Filling level restriction other storages --> Ist Kreisbedingung erfüllt? (JR)
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) ) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')
## CO2 limit --> ggf. hier auch mit Subset arbeiten (Technologien, die Brennstoff verbrauchen). (JR)
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum()* partial_year_factor <= l_co2*1_000_000 , name = 'CO2_limit')
# %%
m.solve(solver_name = 'highs')
st.markdown("---")
colb1, colb2 = st.columns(2)
# %%
#c_var_i.to_dataframe(name='VarCosts')
# %%
# Installed Cap
# Assuming df_excel has columns 'All' and 'Capacities'
fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
y='i', x='K', orientation='h', title='Total Installed Capacities', color='i')
#fig
# %%
df_new_capacities = m.solution['K'].to_dataframe().reset_index()
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='New Capacities', color='i')
with colb1:
fig
# %%
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index()
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t', title='Production', color='i')
with colb2:
fig
# %%
df_price = m.constraints['load'].dual.to_dataframe().reset_index()
df_price['dual'] = df_price['dual']/dt
# %%
fig = px.line(df_price, y='dual', x='t', title='Prices')
with colb1:
fig
# %%
df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
df_contr_marg['dual'] = df_contr_marg['dual']/dt
# %%
fig = px.line(m.constraints['max_cap'].dual.to_dataframe().reset_index(), y='dual', x='t',title='contribution margin', color='i')
with colb2:
fig
# %%
df_Co2_price = pd.DataFrame({'CO2_Price': [float(m.constraints['CO2_limit'].dual.values)]})
with colb2:
st.write('CO2 Price ' + str(df_Co2_price))
# %%
((m.solution['y'] / eff_i) * co2_factor_i * dt).sum()
# %%
import pandas as pd
from io import BytesIO
#from pyxlsb import open_workbook as open_xlsb
import streamlit as st
import xlsxwriter
# %%
output = BytesIO()
# Create a Pandas Excel writer using XlsxWriter as the engine
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
# Write each DataFrame to a different sheet
df_price.to_excel(writer, sheet_name='Prices', index=False)
df_contr_marg.to_excel(writer, sheet_name='Contribution Margin', index=False)
df_new_capacities.to_excel(writer, sheet_name='Capacities', index=False)
df_production.to_excel(writer, sheet_name='Production', index=False)
df_Co2_price.to_excel(writer, sheet_name='CO2_Price', index=False)
with col4:
st.download_button(
label="Download Excel workbook Results",
data=output.getvalue(),
file_name="workbook.xlsx",
mime="application/vnd.ms-excel"
)
|