Spaces:
Runtime error
Runtime error
File size: 7,722 Bytes
8758d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# %%
import pandas as pd
import pickle
# Define the file path for the pickle file
pickle_file_path = 'model_data.pkl'
# Function to save dictionaries to a pickle file
def save_to_pickle(sets_dict, params_dict):
with open(pickle_file_path, 'wb') as file:
pickle.dump({'sets': sets_dict, 'params': params_dict}, file)
# Function to load dictionaries from a pickle file
def load_from_pickle():
with open(pickle_file_path, 'rb') as file:
data = pickle.load(file)
return data['sets'], data['params']
def load_data_from_excel(url_excel,load_from_pickle_flag = False, write_to_pickle_flag = True):
if load_from_pickle_flag:
# Load dictionaries from the pickle file
loaded_sets_dict, loaded_params_dict = load_from_pickle()
return loaded_sets_dict, loaded_params_dict
# Timesteps
df_excel = pd.read_excel(url_excel, sheet_name='Timesteps_All', header=None)
t = pd.Index(df_excel.iloc[:, 0], name='t')
# Technologies
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
i = pd.Index(df_excel.iloc[:, 0], name='i')
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
iConv = pd.Index(df_excel.iloc[0:7, 2], name='iConv')
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
iRes = pd.Index(df_excel.iloc[0:4, 4], name='iRes')
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
iSto = pd.Index(df_excel.iloc[0:2, 6], name='iSto')
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
iPtG = pd.Index(df_excel.iloc[0:1, 8], name='iPtG')
df_excel = pd.read_excel(url_excel, sheet_name='Technologies')
iHyRes = pd.Index(df_excel.iloc[0:1, 10], name='iHyRes')
# Parameters
l_co2 = pd.read_excel(url_excel, sheet_name='CO2_Cap').iloc[0,0]
p_co2 = 0
dt = 1
# Demand
df_excel= pd.read_excel(url_excel, sheet_name = 'Demand')
#df_melt = pd.melt(df_excel, id_vars='Zeit')
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Unnamed: 1':'Demand'})
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('t')
D_t = df_excel.iloc[:,0].to_xarray()
## Efficiencies
df_excel = pd.read_excel(url_excel, sheet_name = 'Efficiency')
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'Efficiency'})
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
eff_i = df_excel.iloc[:,0].to_xarray()
## Variable costs
# Fuel costs
df_excel = pd.read_excel(url_excel, sheet_name = 'FuelCosts')
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'FuelCosts'})
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
c_fuel_i = df_excel.iloc[:,0].to_xarray()
# Apply slider value
#c_fuel_i.loc[dict(i = 'Fossil Gas')] = price_gas
#c_fuel_i.loc[dict(i = 'H2')] = price_h2
# Other var. costs
df_excel = pd.read_excel(url_excel, sheet_name = 'OtherVarCosts')
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'OtherVarCosts'})
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
c_other_i = df_excel.iloc[:,0].to_xarray()
# Investment costs
df_excel = pd.read_excel(url_excel, sheet_name = 'InvCosts')
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InvCosts'})
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
c_inv_i = df_excel.iloc[:,0].to_xarray()*1000*0.1 # kw to MW and annuity factor
# Emission factor
df_excel = pd.read_excel(url_excel, sheet_name = 'EmFactor')
df_excel = df_excel.rename(columns = {'Conventionals':'i', 'Unnamed: 1':'EmFactor'})
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
co2_factor_i = df_excel.iloc[:,0].to_xarray()
## Calculation of variable costs
c_var_i = (c_fuel_i.sel(i = iConv) + p_co2 * co2_factor_i.sel(i = iConv)) / eff_i.sel(i = iConv) + c_other_i.sel(i = iConv)
# RES capacity factors
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES',header=[0,1])
#df_excel = pd.read_excel(url_excel, sheet_name = 'RES', index_col=['Timesteps'], columns=['PV', 'WindOn', 'WindOff', 'RoR'])
df_excel = pd.read_excel(url_excel, sheet_name = 'RES')
df_excel = df_excel.set_index(['Timesteps'])
df_test = df_excel
df_excel = df_excel.stack()
#df_excel = df_excel.rename(columns={'PV', 'WindOn', 'WindOff', 'RoR'})
df_test2 = df_excel
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
#df_excel = df_excel.fillna(0)
#df_test = df_excel.set_index(['Timesteps', 'PV', 'WindOn', 'WindOff', 'RoR']).stack([0])
#df_test.index = df_test.index.set_names(['t','i'])
s_t_r_iRes = df_excel.to_xarray().rename({'level_1': 'i','Timesteps':'t'})
#s_t_r_iRes = df_excel.iloc[:,0].to_xarray()
# Base capacities
df_excel = pd.read_excel(url_excel, sheet_name = 'InstalledCap')
df_excel = df_excel.rename(columns = {'All':'i', 'Unnamed: 1':'InstalledCap'})
df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
K_0_i = df_excel.iloc[:,0].to_xarray()
# Energy-to-power ratio storages
df_excel = pd.read_excel(url_excel, sheet_name = 'E2P')
df_excel = df_excel.rename(columns = {'Storage':'i', 'Unnamed: 1':'E2P ratio'})
#df_excel = i.to_frame().reset_index(drop=True).merge(df_excel, how = 'left')
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('i')
e2p_iSto = df_excel.iloc[:,0].to_xarray()
# Inflow for hydro reservoir
df_excel = pd.read_excel(url_excel, sheet_name = 'HydroInflow')
df_excel = df_excel.rename(columns = {'Timesteps':'t', 'Hydro Water Reservoir':'Inflow'})
df_excel = df_excel.fillna(0)
df_excel = df_excel.set_index('t')
h_t = df_excel.iloc[:,0].to_xarray()
sets_dict = {}
params_dict = {}
# Append parameters to the dictionary
sets_dict['t'] = t
sets_dict['i'] = i
sets_dict['iSto'] = iSto
sets_dict['iConv'] = iConv
sets_dict['iPtG'] = iPtG
sets_dict['iRes'] = iRes
sets_dict['iHyRes'] = iHyRes
# Append parameters to the dictionary
params_dict['l_co2'] = l_co2
params_dict['p_co2'] = p_co2
params_dict['dt'] = dt
params_dict['D_t'] = D_t
params_dict['eff_i'] = eff_i
params_dict['c_fuel_i'] = c_fuel_i
params_dict['c_other_i'] = c_other_i
params_dict['c_inv_i'] = c_inv_i
params_dict['co2_factor_i'] = co2_factor_i
params_dict['c_var_i'] = c_var_i
params_dict['s_t_r_iRes'] = s_t_r_iRes
params_dict['K_0_i'] = K_0_i
params_dict['e2p_iSto'] = e2p_iSto
params_dict['h_t'] = h_t
if write_to_pickle_flag:
save_to_pickle(sets_dict, params_dict)
return sets_dict, params_dict
# %%
# # Example usage:
# url_excel = "Input_Jahr_2021.xlsx" # Replace with your actual file path
# limit_co2 = 0.5
# price_co2 = 50
# price_gas = 3
# price_h2 = 5
# sets, params = load_data_from_excel(url_excel,write_to_pickle_flag=True)
# # %%
# sets, params = load_data_from_excel(url_excel,load_from_pickle_flag=True)
# # %%
|