File size: 3,334 Bytes
fd15a95
 
 
 
 
 
 
 
 
 
 
 
 
043c07c
 
 
fd15a95
043c07c
 
 
 
 
 
 
 
523acf8
043c07c
 
 
 
94e7f78
043c07c
 
 
 
2d1e119
043c07c
c120622
94e7f78
9e51781
2d1e119
9e51781
2d1e119
8314c44
 
ada522a
 
 
 
 
2f04e25
e9269c8
 
8091ee3
9e51781
8091ee3
e9269c8
 
 
 
 
 
 
 
fd15a95
 
043c07c
ada522a
 
 
 
fc24fec
fd15a95
 
043c07c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, pipeline


def load_and_fix_data(input_file, model_sampling_rate):
    speech, sample_rate = librosa.load(input_file)
    if len(speech.shape) > 1:
        speech = speech[:, 0] + speech[:, 1]
    if sample_rate != model_sampling_rate:
        speech = librosa.resample(speech, sample_rate, model_sampling_rate)
    return speech

#Loading the feature extractor and instantiating the pipeline by launching pipeline()
model_name1 = "jonatasgrosman/wav2vec2-xls-r-1b-spanish"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name1)
sampling_rate = feature_extractor.sampling_rate
asr = pipeline("automatic-speech-recognition", model=model_name1)

#Instantiating a pipeline for classifying the text
model_name2 = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021"
classifier = pipeline("text-classification", model = model_name2)

#Defining a function for speech-to_text conversion
def speech_to_text(input_file):
    speech = load_and_fix_data(input_file, sampling_rate)
    transcribed_text = asr(speech, chunk_length_s=15, stride_length_s=1)["text"]
    return transcribed_text

#Defining a function for sexism detection        
def sexism_detector(transcribed_text):
    sexism_detection = classifier(transcribed_text)[0]["label"]
    return sexism_detection

#Defining a function which will output Spanish audio transcription and the detected sentiment
new_line = "\n\n\n"
def asr_and_sexism_detection(input_file):
    transcribed_text = speech_to_text(input_file)
    sexism_detection = sexism_detector(transcribed_text)
    if sexism_detection == "LABEL_0":
        return f"Audio Transcription : {transcribed_text} {new_line} Sexism Detector Output: The input audio contains NON-SEXIST language"
    else:
        return f"Audio Transcription : {transcribed_text} {new_line} Sexism Detector Output: SEXIST LANGUAGE DETECTED"


inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")]
outputs=[gr.outputs.Textbox(label="Predicción")]
examples=[["audio1.wav"], ["audio2.wav"], ["audio3.wav"], ["audio4.wav"], ["sample_audio.wav"]]
title="Spanish Audio Transcription based Sexism Detection"

description = """ This is a Gradio demo for Spanish audio transcription-based Sexism detection. The key objective is to detect whether the sexist language is present in the audio or not. To use this app, simply provide an audio input (audio recording or via microphone), which will subsequently be transcribed and classified as sexism/non-sexism pertaining to audio (transcription) with the help of pre-trained models.



**Note regarding the predicted label: LABEL_0: "NON SEXISM" or LABEL_1: "SEXISM"**



Pre-trained Model used for Spanish ASR: [jonatasgrosman/wav2vec2-xls-r-1b-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-spanish)

Pre-trained Model used for Sexism Detection : [hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021](https://huggingface.co/hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021)

"""


gr.Interface(
    asr_and_sexism_detection,
    inputs=inputs,
    outputs=outputs,
    examples=examples,
    title=title,
    description=description,
    layout="horizontal",
    theme="huggingface",
).launch(enable_queue=True)