Spaces:
Running
Running
File size: 6,475 Bytes
99243b4 c06a3d7 73099b9 c06a3d7 ae149aa c06a3d7 73099b9 ae149aa 2dfdfa9 73099b9 ae149aa 73099b9 ae149aa 73099b9 ae149aa 2dfdfa9 73099b9 1421d7a 2dfdfa9 73099b9 ae149aa 73099b9 ae149aa 2dfdfa9 73099b9 ae149aa 99243b4 9735cfa 99243b4 ae149aa 9735cfa 73099b9 ae149aa 73099b9 9735cfa f4b5294 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 73099b9 ae149aa 9735cfa ae149aa 8d3fe6c ae149aa 9735cfa ae149aa 9735cfa ae149aa 73099b9 9735cfa 73099b9 ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa ae149aa 9735cfa 99243b4 9735cfa ae149aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
from dualstylegan import Model
DESCRIPTION = """# Portrait Style Transfer with [DualStyleGAN](https://github.com/williamyang1991/DualStyleGAN)
<img id="overview" alt="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" />
"""
def get_style_image_url(style_name: str) -> str:
base_url = "https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images"
filenames = {
"cartoon": "cartoon_overview.jpg",
"caricature": "caricature_overview.jpg",
"anime": "anime_overview.jpg",
"arcane": "Reconstruction_arcane_overview.jpg",
"comic": "Reconstruction_comic_overview.jpg",
"pixar": "Reconstruction_pixar_overview.jpg",
"slamdunk": "Reconstruction_slamdunk_overview.jpg",
}
return f"{base_url}/{filenames[style_name]}"
def get_style_image_markdown_text(style_name: str) -> str:
url = get_style_image_url(style_name)
return f'<img id="style-image" src="{url}" alt="style image">'
def update_slider(choice: str) -> dict:
max_vals = {
"cartoon": 316,
"caricature": 198,
"anime": 173,
"arcane": 99,
"comic": 100,
"pixar": 121,
"slamdunk": 119,
}
return gr.Slider(maximum=max_vals[choice])
def update_style_image(style_name: str) -> dict:
text = get_style_image_markdown_text(style_name)
return gr.Markdown(value=text)
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
gr.Markdown(
"""## Step 1 (Preprocess Input Image)
- Drop an image containing a near-frontal face to the **Input Image**.
- If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand.
- Hit the **Preprocess** button.
- Choose the encoder version. Default is Z+ encoder which has better stylization performance. W+ encoder better reconstructs the input image to preserve more details.
- The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image.
"""
)
with gr.Row():
encoder_type = gr.Radio(
label="Encoder Type",
choices=["Z+ encoder (better stylization)", "W+ encoder (better reconstruction)"],
value="Z+ encoder (better stylization)",
)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image", type="filepath")
with gr.Row():
preprocess_button = gr.Button("Preprocess")
with gr.Column():
with gr.Row():
aligned_face = gr.Image(label="Aligned Face", type="numpy", interactive=False)
with gr.Column():
reconstructed_face = gr.Image(label="Reconstructed Face", type="numpy")
instyle = gr.State()
with gr.Row():
paths = sorted(pathlib.Path("images").glob("*.jpg"))
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
with gr.Group():
gr.Markdown(
"""## Step 2 (Select Style Image)
- Select **Style Type**.
- Select **Style Image Index** from the image table below.
"""
)
with gr.Row():
with gr.Column():
style_type = gr.Radio(label="Style Type", choices=model.style_types, value=model.style_types[0])
text = get_style_image_markdown_text("cartoon")
style_image = gr.Markdown(value=text, latex_delimiters=[])
style_index = gr.Slider(label="Style Image Index", minimum=0, maximum=316, step=1, value=26)
with gr.Row():
gr.Examples(
examples=[
["cartoon", 26],
["caricature", 65],
["arcane", 63],
["pixar", 80],
],
inputs=[style_type, style_index],
)
with gr.Group():
gr.Markdown(
"""## Step 3 (Generate Style Transferred Image)
- Adjust **Structure Weight** and **Color Weight**.
- These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image.
- Tips: For W+ encoder, better way of (Structure Only) is to uncheck (Structure Only) and set Color weight to 0.
- Hit the **Generate** button.
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
structure_weight = gr.Slider(label="Structure Weight", minimum=0, maximum=1, step=0.1, value=0.6)
with gr.Row():
color_weight = gr.Slider(label="Color Weight", minimum=0, maximum=1, step=0.1, value=1)
with gr.Row():
structure_only = gr.Checkbox(label="Structure Only", value=False)
with gr.Row():
generate_button = gr.Button("Generate")
with gr.Column():
result = gr.Image(label="Result")
with gr.Row():
gr.Examples(
examples=[
[0.6, 1.0],
[0.3, 1.0],
[0.0, 1.0],
[1.0, 0.0],
],
inputs=[structure_weight, color_weight],
)
preprocess_button.click(
fn=model.detect_and_align_face,
inputs=[input_image],
outputs=aligned_face,
)
aligned_face.change(
fn=model.reconstruct_face,
inputs=[aligned_face, encoder_type],
outputs=[
reconstructed_face,
instyle,
],
)
style_type.change(
fn=update_slider,
inputs=style_type,
outputs=style_index,
)
style_type.change(
fn=update_style_image,
inputs=style_type,
outputs=style_image,
)
generate_button.click(
fn=model.generate,
inputs=[
style_type,
style_index,
structure_weight,
color_weight,
structure_only,
instyle,
],
outputs=result,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|