Spaces:
Runtime error
Runtime error
/****************************************************************************** | |
* Copyright (c) 2011, Duane Merrill. All rights reserved. | |
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* * Redistributions of source code must retain the above copyright | |
* notice, this list of conditions and the following disclaimer. | |
* * Redistributions in binary form must reproduce the above copyright | |
* notice, this list of conditions and the following disclaimer in the | |
* documentation and/or other materials provided with the distribution. | |
* * Neither the name of the NVIDIA CORPORATION nor the | |
* names of its contributors may be used to endorse or promote products | |
* derived from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
* | |
******************************************************************************/ | |
/** | |
* \file | |
* cub::BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block. Supports non-commutative reduction operators. | |
*/ | |
#pragma once | |
#include "../../warp/warp_reduce.cuh" | |
#include "../../config.cuh" | |
#include "../../util_ptx.cuh" | |
/// Optional outer namespace(s) | |
CUB_NS_PREFIX | |
/// CUB namespace | |
namespace cub { | |
/** | |
* \brief BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block. Supports non-commutative reduction operators. | |
*/ | |
template < | |
typename T, ///< Data type being reduced | |
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension | |
int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension | |
int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension | |
int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective | |
struct BlockReduceWarpReductions | |
{ | |
/// Constants | |
enum | |
{ | |
/// The thread block size in threads | |
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z, | |
/// Number of warp threads | |
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH), | |
/// Number of active warps | |
WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS, | |
/// The logical warp size for warp reductions | |
LOGICAL_WARP_SIZE = CUB_MIN(BLOCK_THREADS, WARP_THREADS), | |
/// Whether or not the logical warp size evenly divides the thread block size | |
EVEN_WARP_MULTIPLE = (BLOCK_THREADS % LOGICAL_WARP_SIZE == 0) | |
}; | |
/// WarpReduce utility type | |
typedef typename WarpReduce<T, LOGICAL_WARP_SIZE, PTX_ARCH>::InternalWarpReduce WarpReduce; | |
/// Shared memory storage layout type | |
struct _TempStorage | |
{ | |
typename WarpReduce::TempStorage warp_reduce[WARPS]; ///< Buffer for warp-synchronous scan | |
T warp_aggregates[WARPS]; ///< Shared totals from each warp-synchronous scan | |
T block_prefix; ///< Shared prefix for the entire thread block | |
}; | |
/// Alias wrapper allowing storage to be unioned | |
struct TempStorage : Uninitialized<_TempStorage> {}; | |
// Thread fields | |
_TempStorage &temp_storage; | |
int linear_tid; | |
int warp_id; | |
int lane_id; | |
/// Constructor | |
__device__ __forceinline__ BlockReduceWarpReductions( | |
TempStorage &temp_storage) | |
: | |
temp_storage(temp_storage.Alias()), | |
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)), | |
warp_id((WARPS == 1) ? 0 : linear_tid / WARP_THREADS), | |
lane_id(LaneId()) | |
{} | |
template <bool FULL_TILE, typename ReductionOp, int SUCCESSOR_WARP> | |
__device__ __forceinline__ T ApplyWarpAggregates( | |
ReductionOp reduction_op, ///< [in] Binary scan operator | |
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items | |
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS) | |
Int2Type<SUCCESSOR_WARP> /*successor_warp*/) | |
{ | |
if (FULL_TILE || (SUCCESSOR_WARP * LOGICAL_WARP_SIZE < num_valid)) | |
{ | |
T addend = temp_storage.warp_aggregates[SUCCESSOR_WARP]; | |
warp_aggregate = reduction_op(warp_aggregate, addend); | |
} | |
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<SUCCESSOR_WARP + 1>()); | |
} | |
template <bool FULL_TILE, typename ReductionOp> | |
__device__ __forceinline__ T ApplyWarpAggregates( | |
ReductionOp /*reduction_op*/, ///< [in] Binary scan operator | |
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items | |
int /*num_valid*/, ///< [in] Number of valid elements (may be less than BLOCK_THREADS) | |
Int2Type<WARPS> /*successor_warp*/) | |
{ | |
return warp_aggregate; | |
} | |
/// Returns block-wide aggregate in <em>thread</em><sub>0</sub>. | |
template < | |
bool FULL_TILE, | |
typename ReductionOp> | |
__device__ __forceinline__ T ApplyWarpAggregates( | |
ReductionOp reduction_op, ///< [in] Binary scan operator | |
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items | |
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS) | |
{ | |
// Share lane aggregates | |
if (lane_id == 0) | |
{ | |
temp_storage.warp_aggregates[warp_id] = warp_aggregate; | |
} | |
CTA_SYNC(); | |
// Update total aggregate in warp 0, lane 0 | |
if (linear_tid == 0) | |
{ | |
warp_aggregate = ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<1>()); | |
} | |
return warp_aggregate; | |
} | |
/// Computes a thread block-wide reduction using addition (+) as the reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>. | |
template <bool FULL_TILE> | |
__device__ __forceinline__ T Sum( | |
T input, ///< [in] Calling thread's input partial reductions | |
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS) | |
{ | |
cub::Sum reduction_op; | |
int warp_offset = (warp_id * LOGICAL_WARP_SIZE); | |
int warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ? | |
LOGICAL_WARP_SIZE : | |
num_valid - warp_offset; | |
// Warp reduction in every warp | |
T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>( | |
input, | |
warp_num_valid, | |
cub::Sum()); | |
// Update outputs and block_aggregate with warp-wide aggregates from lane-0s | |
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid); | |
} | |
/// Computes a thread block-wide reduction using the specified reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>. | |
template < | |
bool FULL_TILE, | |
typename ReductionOp> | |
__device__ __forceinline__ T Reduce( | |
T input, ///< [in] Calling thread's input partial reductions | |
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS) | |
ReductionOp reduction_op) ///< [in] Binary reduction operator | |
{ | |
int warp_offset = warp_id * LOGICAL_WARP_SIZE; | |
int warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ? | |
LOGICAL_WARP_SIZE : | |
num_valid - warp_offset; | |
// Warp reduction in every warp | |
T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>( | |
input, | |
warp_num_valid, | |
reduction_op); | |
// Update outputs and block_aggregate with warp-wide aggregates from lane-0s | |
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid); | |
} | |
}; | |
} // CUB namespace | |
CUB_NS_POSTFIX // Optional outer namespace(s) | |