LIVE / thrust /cub /block /specializations /block_reduce_warp_reductions.cuh
Xu Ma
upload all files
28958dc
raw
history blame
9.73 kB
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block. Supports non-commutative reduction operators.
*/
#pragma once
#include "../../warp/warp_reduce.cuh"
#include "../../config.cuh"
#include "../../util_ptx.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block. Supports non-commutative reduction operators.
*/
template <
typename T, ///< Data type being reduced
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension
int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension
int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective
struct BlockReduceWarpReductions
{
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
/// Number of warp threads
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH),
/// Number of active warps
WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,
/// The logical warp size for warp reductions
LOGICAL_WARP_SIZE = CUB_MIN(BLOCK_THREADS, WARP_THREADS),
/// Whether or not the logical warp size evenly divides the thread block size
EVEN_WARP_MULTIPLE = (BLOCK_THREADS % LOGICAL_WARP_SIZE == 0)
};
/// WarpReduce utility type
typedef typename WarpReduce<T, LOGICAL_WARP_SIZE, PTX_ARCH>::InternalWarpReduce WarpReduce;
/// Shared memory storage layout type
struct _TempStorage
{
typename WarpReduce::TempStorage warp_reduce[WARPS]; ///< Buffer for warp-synchronous scan
T warp_aggregates[WARPS]; ///< Shared totals from each warp-synchronous scan
T block_prefix; ///< Shared prefix for the entire thread block
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
// Thread fields
_TempStorage &temp_storage;
int linear_tid;
int warp_id;
int lane_id;
/// Constructor
__device__ __forceinline__ BlockReduceWarpReductions(
TempStorage &temp_storage)
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)),
warp_id((WARPS == 1) ? 0 : linear_tid / WARP_THREADS),
lane_id(LaneId())
{}
template <bool FULL_TILE, typename ReductionOp, int SUCCESSOR_WARP>
__device__ __forceinline__ T ApplyWarpAggregates(
ReductionOp reduction_op, ///< [in] Binary scan operator
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
Int2Type<SUCCESSOR_WARP> /*successor_warp*/)
{
if (FULL_TILE || (SUCCESSOR_WARP * LOGICAL_WARP_SIZE < num_valid))
{
T addend = temp_storage.warp_aggregates[SUCCESSOR_WARP];
warp_aggregate = reduction_op(warp_aggregate, addend);
}
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<SUCCESSOR_WARP + 1>());
}
template <bool FULL_TILE, typename ReductionOp>
__device__ __forceinline__ T ApplyWarpAggregates(
ReductionOp /*reduction_op*/, ///< [in] Binary scan operator
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int /*num_valid*/, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
Int2Type<WARPS> /*successor_warp*/)
{
return warp_aggregate;
}
/// Returns block-wide aggregate in <em>thread</em><sub>0</sub>.
template <
bool FULL_TILE,
typename ReductionOp>
__device__ __forceinline__ T ApplyWarpAggregates(
ReductionOp reduction_op, ///< [in] Binary scan operator
T warp_aggregate, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
{
// Share lane aggregates
if (lane_id == 0)
{
temp_storage.warp_aggregates[warp_id] = warp_aggregate;
}
CTA_SYNC();
// Update total aggregate in warp 0, lane 0
if (linear_tid == 0)
{
warp_aggregate = ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<1>());
}
return warp_aggregate;
}
/// Computes a thread block-wide reduction using addition (+) as the reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>.
template <bool FULL_TILE>
__device__ __forceinline__ T Sum(
T input, ///< [in] Calling thread's input partial reductions
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
{
cub::Sum reduction_op;
int warp_offset = (warp_id * LOGICAL_WARP_SIZE);
int warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ?
LOGICAL_WARP_SIZE :
num_valid - warp_offset;
// Warp reduction in every warp
T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>(
input,
warp_num_valid,
cub::Sum());
// Update outputs and block_aggregate with warp-wide aggregates from lane-0s
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid);
}
/// Computes a thread block-wide reduction using the specified reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>.
template <
bool FULL_TILE,
typename ReductionOp>
__device__ __forceinline__ T Reduce(
T input, ///< [in] Calling thread's input partial reductions
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
ReductionOp reduction_op) ///< [in] Binary reduction operator
{
int warp_offset = warp_id * LOGICAL_WARP_SIZE;
int warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ?
LOGICAL_WARP_SIZE :
num_valid - warp_offset;
// Warp reduction in every warp
T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>(
input,
warp_num_valid,
reduction_op);
// Update outputs and block_aggregate with warp-wide aggregates from lane-0s
return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid);
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)