svystun-taras's picture
created the updated web ui
0fdb130
raw
history blame
25.3 kB
import collections
import random
from collections import Counter, defaultdict
from dataclasses import dataclass, field, fields
from pathlib import Path
from platform import python_version
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import datasets
import tokenizers
import torch
import transformers
from datasets import Dataset
from huggingface_hub import CardData, DatasetFilter, ModelCard, dataset_info, list_datasets, model_info
from huggingface_hub.repocard_data import EvalResult, eval_results_to_model_index
from huggingface_hub.utils import yaml_dump
from sentence_transformers import __version__ as sentence_transformers_version
from transformers import PretrainedConfig, TrainerCallback
from transformers.integrations import CodeCarbonCallback
from transformers.modelcard import make_markdown_table
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.training_args import TrainingArguments
from setfit import __version__ as setfit_version
from . import logging
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
from setfit.modeling import SetFitModel
from setfit.trainer import Trainer
class ModelCardCallback(TrainerCallback):
def __init__(self, trainer: "Trainer") -> None:
super().__init__()
self.trainer = trainer
callbacks = [
callback
for callback in self.trainer.callback_handler.callbacks
if isinstance(callback, CodeCarbonCallback)
]
if callbacks:
trainer.model.model_card_data.code_carbon_callback = callbacks[0]
def on_init_end(
self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: "SetFitModel", **kwargs
):
if not model.model_card_data.dataset_id:
# Inferring is hacky - it may break in the future, so let's be safe
try:
model.model_card_data.infer_dataset_id(self.trainer.train_dataset)
except Exception:
pass
dataset = self.trainer.eval_dataset or self.trainer.train_dataset
if dataset is not None:
if not model.model_card_data.widget:
model.model_card_data.set_widget_examples(dataset)
if self.trainer.train_dataset:
model.model_card_data.set_train_set_metrics(self.trainer.train_dataset)
# Does not work for multilabel
try:
model.model_card_data.num_classes = len(set(self.trainer.train_dataset["label"]))
model.model_card_data.set_label_examples(self.trainer.train_dataset)
except Exception:
pass
def on_train_begin(
self, args: TrainingArguments, state: TrainerState, control: TrainerControl, model: "SetFitModel", **kwargs
) -> None:
# model.model_card_data.hyperparameters = extract_hyperparameters_from_trainer(self.trainer)
ignore_keys = {
"output_dir",
"logging_dir",
"logging_strategy",
"logging_first_step",
"logging_steps",
"evaluation_strategy",
"eval_steps",
"eval_delay",
"save_strategy",
"save_steps",
"save_total_limit",
"metric_for_best_model",
"greater_is_better",
"report_to",
"samples_per_label",
"show_progress_bar",
}
get_name_keys = {"loss", "distance_metric"}
args_dict = args.to_dict()
model.model_card_data.hyperparameters = {
key: value.__name__ if key in get_name_keys else value
for key, value in args_dict.items()
if key not in ignore_keys and value is not None
}
def on_evaluate(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
model: "SetFitModel",
metrics: Dict[str, float],
**kwargs,
) -> None:
if (
model.model_card_data.eval_lines_list
and model.model_card_data.eval_lines_list[-1]["Step"] == state.global_step
):
model.model_card_data.eval_lines_list[-1]["Validation Loss"] = metrics["eval_embedding_loss"]
else:
model.model_card_data.eval_lines_list.append(
{
# "Training Loss": self.state.log_history[-1]["loss"] if "loss" in self.state.log_history[-1] else "-",
"Epoch": state.epoch,
"Step": state.global_step,
"Training Loss": "-",
"Validation Loss": metrics["eval_embedding_loss"],
}
)
def on_log(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
model: "SetFitModel",
logs: Dict[str, float],
**kwargs,
):
keys = {"embedding_loss", "polarity_embedding_loss", "aspect_embedding_loss"} & set(logs)
if keys:
if (
model.model_card_data.eval_lines_list
and model.model_card_data.eval_lines_list[-1]["Step"] == state.global_step
):
model.model_card_data.eval_lines_list[-1]["Training Loss"] = logs[keys.pop()]
else:
model.model_card_data.eval_lines_list.append(
{
"Epoch": state.epoch,
"Step": state.global_step,
"Training Loss": logs[keys.pop()],
"Validation Loss": "-",
}
)
YAML_FIELDS = [
"language",
"license",
"library_name",
"tags",
"datasets",
"metrics",
"pipeline_tag",
"widget",
"model-index",
"co2_eq_emissions",
"base_model",
"inference",
]
IGNORED_FIELDS = ["model"]
@dataclass
class SetFitModelCardData(CardData):
"""A dataclass storing data used in the model card.
Args:
language (`Optional[Union[str, List[str]]]`): The model language, either a string or a list,
e.g. "en" or ["en", "de", "nl"]
license (`Optional[str]`): The license of the model, e.g. "apache-2.0", "mit",
or "cc-by-nc-sa-4.0"
model_name (`Optional[str]`): The pretty name of the model, e.g. "SetFit with mBERT-base on SST2".
If not defined, uses encoder_name/encoder_id and dataset_name/dataset_id to generate a model name.
model_id (`Optional[str]`): The model ID when pushing the model to the Hub,
e.g. "tomaarsen/span-marker-mbert-base-multinerd".
dataset_name (`Optional[str]`): The pretty name of the dataset, e.g. "SST2".
dataset_id (`Optional[str]`): The dataset ID of the dataset, e.g. "dair-ai/emotion".
dataset_revision (`Optional[str]`): The dataset revision/commit that was for training/evaluation.
st_id (`Optional[str]`): The Sentence Transformers model ID.
<Tip>
Install [``codecarbon``](https://github.com/mlco2/codecarbon) to automatically track carbon emission usage and
include it in your model cards.
</Tip>
Example::
>>> model = SetFitModel.from_pretrained(
... "sentence-transformers/paraphrase-mpnet-base-v2",
... labels=["negative", "positive"],
... # Model card variables
... model_card_data=SetFitModelCardData(
... model_id="tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2",
... dataset_name="SST2",
... dataset_id="sst2",
... license="apache-2.0",
... language="en",
... ),
... )
"""
# Potentially provided by the user
language: Optional[Union[str, List[str]]] = None
license: Optional[str] = None
tags: Optional[List[str]] = field(
default_factory=lambda: [
"setfit",
"sentence-transformers",
"text-classification",
"generated_from_setfit_trainer",
]
)
model_name: Optional[str] = None
model_id: Optional[str] = None
dataset_name: Optional[str] = None
dataset_id: Optional[str] = None
dataset_revision: Optional[str] = None
task_name: Optional[str] = None
st_id: Optional[str] = None
# Automatically filled by `ModelCardCallback` and the Trainer directly
hyperparameters: Dict[str, Any] = field(default_factory=dict, init=False)
eval_results_dict: Optional[Dict[str, Any]] = field(default_factory=dict, init=False)
eval_lines_list: List[Dict[str, float]] = field(default_factory=list, init=False)
metric_lines: List[Dict[str, float]] = field(default_factory=list, init=False)
widget: List[Dict[str, str]] = field(default_factory=list, init=False)
predict_example: Optional[str] = field(default=None, init=False)
label_example_list: List[Dict[str, str]] = field(default_factory=list, init=False)
tokenizer_warning: bool = field(default=False, init=False)
train_set_metrics_list: List[Dict[str, str]] = field(default_factory=list, init=False)
train_set_sentences_per_label_list: List[Dict[str, str]] = field(default_factory=list, init=False)
code_carbon_callback: Optional[CodeCarbonCallback] = field(default=None, init=False)
num_classes: Optional[int] = field(default=None, init=False)
best_model_step: Optional[int] = field(default=None, init=False)
metrics: List[str] = field(default_factory=lambda: ["accuracy"], init=False)
# Computed once, always unchanged
pipeline_tag: str = field(default="text-classification", init=False)
library_name: str = field(default="setfit", init=False)
version: Dict[str, str] = field(
default_factory=lambda: {
"python": python_version(),
"setfit": setfit_version,
"sentence_transformers": sentence_transformers_version,
"transformers": transformers.__version__,
"torch": torch.__version__,
"datasets": datasets.__version__,
"tokenizers": tokenizers.__version__,
},
init=False,
)
# ABSA-related arguments
absa: Dict[str, Any] = field(default=None, init=False, repr=False)
# Passed via `register_model` only
model: Optional["SetFitModel"] = field(default=None, init=False, repr=False)
head_class: Optional[str] = field(default=None, init=False, repr=False)
inference: Optional[bool] = field(default=True, init=False, repr=False)
def __post_init__(self):
# We don't want to save "ignore_metadata_errors" in our Model Card
if self.dataset_id:
if is_on_huggingface(self.dataset_id, is_model=False):
if self.language is None:
# if languages are not set, try to determine the language from the dataset on the Hub
try:
info = dataset_info(self.dataset_id)
except Exception:
pass
else:
if info.cardData:
self.language = info.cardData.get("language", self.language)
else:
logger.warning(
f"The provided {self.dataset_id!r} dataset could not be found on the Hugging Face Hub."
" Setting `dataset_id` to None."
)
self.dataset_id = None
if self.model_id and self.model_id.count("/") != 1:
logger.warning(
f"The provided {self.model_id!r} model ID should include the organization or user,"
' such as "tomaarsen/setfit-bge-small-v1.5-sst2-8-shot". Setting `model_id` to None.'
)
self.model_id = None
def set_best_model_step(self, step: int) -> None:
self.best_model_step = step
def set_widget_examples(self, dataset: Dataset) -> None:
samples = dataset.select(random.sample(range(len(dataset)), k=min(len(dataset), 5)))["text"]
self.widget = [{"text": sample} for sample in samples]
samples.sort(key=len)
if samples:
self.predict_example = samples[0]
def set_train_set_metrics(self, dataset: Dataset) -> None:
def add_naive_word_count(sample: Dict[str, Any]) -> Dict[str, Any]:
sample["word_count"] = len(sample["text"].split(" "))
return sample
dataset = dataset.map(add_naive_word_count)
self.train_set_metrics_list = [
{
"Training set": "Word count",
"Min": min(dataset["word_count"]),
"Median": sum(dataset["word_count"]) / len(dataset),
"Max": max(dataset["word_count"]),
},
]
# E.g. if unlabeled via DistillationTrainer
if "label" not in dataset.column_names:
return
sample_label = dataset[0]["label"]
if isinstance(sample_label, collections.abc.Sequence) and not isinstance(sample_label, str):
return
try:
counter = Counter(dataset["label"])
if self.model.labels:
self.train_set_sentences_per_label_list = [
{
"Label": str_label,
"Training Sample Count": counter[
str_label if isinstance(sample_label, str) else self.model.label2id[str_label]
],
}
for str_label in self.model.labels
]
else:
self.train_set_sentences_per_label_list = [
{
"Label": self.model.labels[label]
if self.model.labels and isinstance(label, int)
else str(label),
"Training Sample Count": count,
}
for label, count in sorted(counter.items())
]
except Exception:
# There are some tricky edge cases possible, e.g. if the user provided integer labels that do not fall
# between 0 to num_classes-1, so we make sure we never cause errors.
pass
def set_label_examples(self, dataset: Dataset) -> None:
num_examples_per_label = 3
examples = defaultdict(list)
finished_labels = set()
for sample in dataset:
text = sample["text"]
label = sample["label"]
if label not in finished_labels:
examples[label].append(f"<li>{repr(text)}</li>")
if len(examples[label]) >= num_examples_per_label:
finished_labels.add(label)
if len(finished_labels) == self.num_classes:
break
self.label_example_list = [
{
"Label": self.model.labels[label] if self.model.labels and isinstance(label, int) else label,
"Examples": "<ul>" + "".join(example_set) + "</ul>",
}
for label, example_set in examples.items()
]
def infer_dataset_id(self, dataset: Dataset) -> None:
def subtuple_finder(tuple: Tuple[str], subtuple: Tuple[str]) -> int:
for i, element in enumerate(tuple):
if element == subtuple[0] and tuple[i : i + len(subtuple)] == subtuple:
return i
return -1
def normalize(dataset_id: str) -> str:
for token in "/\\_-":
dataset_id = dataset_id.replace(token, "")
return dataset_id.lower()
cache_files = dataset.cache_files
if cache_files and "filename" in cache_files[0]:
cache_path_parts = Path(cache_files[0]["filename"]).parts
# Check if the cachefile is under "huggingface/datasets"
subtuple = ("huggingface", "datasets")
index = subtuple_finder(cache_path_parts, subtuple)
if index == -1:
return
# Get the folder after "huggingface/datasets"
cache_dataset_name = cache_path_parts[index + len(subtuple)]
# If the dataset has an author:
if "___" in cache_dataset_name:
author, dataset_name = cache_dataset_name.split("___")
else:
author = None
dataset_name = cache_dataset_name
# Make sure the normalized dataset IDs match
dataset_list = [
dataset
for dataset in list_datasets(filter=DatasetFilter(author=author, dataset_name=dataset_name))
if normalize(dataset.id) == normalize(cache_dataset_name)
]
# If there's only one match, get the ID from it
if len(dataset_list) == 1:
self.dataset_id = dataset_list[0].id
def register_model(self, model: "SetFitModel") -> None:
self.model = model
head_class = model.model_head.__class__.__name__
self.head_class = {
"LogisticRegression": "[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)",
"SetFitHead": "[SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead)",
}.get(head_class, head_class)
if not self.model_name:
if self.st_id:
self.model_name = f"SetFit with {self.st_id}"
if self.dataset_name or self.dataset_id:
self.model_name += f" on {self.dataset_name or self.dataset_id}"
else:
self.model_name = "SetFit"
self.inference = self.model.multi_target_strategy is None
def infer_st_id(self, setfit_model_id: str) -> None:
config_dict, _ = PretrainedConfig.get_config_dict(setfit_model_id)
st_id = config_dict.get("_name_or_path")
st_id_path = Path(st_id)
# Sometimes the name_or_path ends exactly with the model_id, e.g.
# "C:\\Users\\tom/.cache\\torch\\sentence_transformers\\BAAI_bge-small-en-v1.5\\"
candidate_model_ids = ["/".join(st_id_path.parts[-2:])]
# Sometimes the name_or_path its final part contains the full model_id, with "/" replaced with a "_", e.g.
# "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/"
# In that case, we take the last part, split on _, and try all combinations
# e.g. "a_b_c_d" -> ['a/b_c_d', 'a_b/c_d', 'a_b_c/d']
splits = st_id_path.name.split("_")
candidate_model_ids += ["_".join(splits[:idx]) + "/" + "_".join(splits[idx:]) for idx in range(1, len(splits))]
for model_id in candidate_model_ids:
if is_on_huggingface(model_id):
self.st_id = model_id
break
def set_st_id(self, model_id: str) -> None:
if is_on_huggingface(model_id):
self.st_id = model_id
def post_training_eval_results(self, results: Dict[str, float]) -> None:
def try_to_pure_python(value: Any) -> Any:
"""Try to convert a value from a Numpy or Torch scalar to pure Python, if not already pure Python"""
try:
if hasattr(value, "dtype"):
return value.item()
except Exception:
pass
return value
pure_python_results = {key: try_to_pure_python(value) for key, value in results.items()}
results_without_split = {
key.split("_", maxsplit=1)[1].title(): value for key, value in pure_python_results.items()
}
self.eval_results_dict = pure_python_results
self.metric_lines = [{"Label": "**all**", **results_without_split}]
def _maybe_round(self, v, decimals=4):
if isinstance(v, float) and len(str(v).split(".")) > 1 and len(str(v).split(".")[1]) > decimals:
return f"{v:.{decimals}f}"
return str(v)
def to_dict(self) -> Dict[str, Any]:
super_dict = {field.name: getattr(self, field.name) for field in fields(self)}
# Compute required formats from the raw data
if self.eval_results_dict:
dataset_split = list(self.eval_results_dict.keys())[0].split("_")[0]
dataset_id = self.dataset_id or "unknown"
dataset_name = self.dataset_name or self.dataset_id or "Unknown"
eval_results = [
EvalResult(
task_type="text-classification",
dataset_type=dataset_id,
dataset_name=dataset_name,
dataset_split=dataset_split,
dataset_revision=self.dataset_revision,
metric_type=metric_key.split("_", maxsplit=1)[1],
metric_value=metric_value,
task_name="Text Classification",
metric_name=metric_key.split("_", maxsplit=1)[1].title(),
)
for metric_key, metric_value in self.eval_results_dict.items()
]
super_dict["metrics"] = [metric_key.split("_", maxsplit=1)[1] for metric_key in self.eval_results_dict]
super_dict["model-index"] = eval_results_to_model_index(self.model_name, eval_results)
eval_lines_list = [
{
key: f"**{self._maybe_round(value)}**" if line["Step"] == self.best_model_step else value
for key, value in line.items()
}
for line in self.eval_lines_list
]
super_dict["eval_lines"] = make_markdown_table(eval_lines_list)
super_dict["explain_bold_in_eval"] = "**" in super_dict["eval_lines"]
# Replace |:---:| with |:---| for left alignment
super_dict["label_examples"] = make_markdown_table(self.label_example_list).replace("-:|", "--|")
super_dict["train_set_metrics"] = make_markdown_table(self.train_set_metrics_list).replace("-:|", "--|")
super_dict["train_set_sentences_per_label_list"] = make_markdown_table(
self.train_set_sentences_per_label_list
).replace("-:|", "--|")
super_dict["metrics_table"] = make_markdown_table(self.metric_lines).replace("-:|", "--|")
if self.code_carbon_callback and self.code_carbon_callback.tracker:
emissions_data = self.code_carbon_callback.tracker._prepare_emissions_data()
super_dict["co2_eq_emissions"] = {
# * 1000 to convert kg to g
"emissions": float(emissions_data.emissions) * 1000,
"source": "codecarbon",
"training_type": "fine-tuning",
"on_cloud": emissions_data.on_cloud == "Y",
"cpu_model": emissions_data.cpu_model,
"ram_total_size": emissions_data.ram_total_size,
"hours_used": round(emissions_data.duration / 3600, 3),
}
if emissions_data.gpu_model:
super_dict["co2_eq_emissions"]["hardware_used"] = emissions_data.gpu_model
if self.dataset_id:
super_dict["datasets"] = [self.dataset_id]
if self.st_id:
super_dict["base_model"] = self.st_id
super_dict["model_max_length"] = self.model.model_body.get_max_seq_length()
if super_dict["num_classes"] is None:
if self.model.labels:
super_dict["num_classes"] = len(self.model.labels)
if super_dict["absa"]:
super_dict.update(super_dict.pop("absa"))
for key in IGNORED_FIELDS:
super_dict.pop(key, None)
return super_dict
def to_yaml(self, line_break=None) -> str:
return yaml_dump(
{key: value for key, value in self.to_dict().items() if key in YAML_FIELDS and value is not None},
sort_keys=False,
line_break=line_break,
).strip()
def is_on_huggingface(repo_id: str, is_model: bool = True) -> bool:
# Models with more than two 'sections' certainly are not public models
if len(repo_id.split("/")) > 2:
return False
try:
if is_model:
model_info(repo_id)
else:
dataset_info(repo_id)
return True
except Exception:
# Fetching models can fail for many reasons: Repository not existing, no internet access, HF down, etc.
return False
def generate_model_card(model: "SetFitModel") -> str:
template_path = Path(__file__).parent / "model_card_template.md"
model_card = ModelCard.from_template(card_data=model.model_card_data, template_path=template_path, hf_emoji="🤗")
return model_card.content