Spaces:
Paused
Paused
import torch | |
from torch import nn | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# import torch.nn as nn | |
torch.set_printoptions(sci_mode=False) | |
class MLP(nn.Module): | |
def __init__(self, input_size=768, output_size=3, dropout_rate=.2, class_weights=None): | |
super(MLP, self).__init__() | |
self.class_weights = class_weights | |
# self.bn1 = nn.BatchNorm1d(hidden_size) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.linear = nn.Linear(input_size, output_size) | |
# nn.init.kaiming_normal_(self.fc1.weight, nonlinearity='relu') | |
# nn.init.kaiming_normal_(self.fc2.weight) | |
def forward(self, x): | |
# return self.linear(self.dropout(x)) | |
return self.dropout(self.linear(x)) | |
def predict(self, x): | |
_, predicted = torch.max(self.forward(x), 1) | |
print('I am predict') | |
return predicted | |
def predict_proba(self, x): | |
print('I am predict_proba') | |
return self.forward(x) | |
def get_loss_fn(self): | |
return nn.CrossEntropyLoss(weight=self.class_weights, reduction='mean') | |
if __name__ == '__main__': | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
import sys | |
# from datetime import datetime | |
# from collections import Counter | |
import torch | |
import torch.optim as optim | |
from torch.utils.data import DataLoader, TensorDataset | |
from safetensors.torch import load_model, save_model | |
from sklearn.utils.class_weight import compute_class_weight | |
import warnings | |
from train_classificator import ( | |
# MLP, | |
plot_labels_distribution, | |
plot_training_metrics, | |
train_model, | |
eval_model | |
) | |
warnings.filterwarnings("ignore") | |
SEED = 1003200212 + 1 | |
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
dataset = load_dataset("CabraVC/vector_dataset_roberta-fine-tuned") | |
# plot_labels_distribution(dataset | |
# # , save_as_filename=f'plots/labels_distribution_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png' | |
# ) | |
input_size = len(dataset['train']['embeddings'][0]) | |
learning_rate = 5e-4 | |
weight_decay = 0 | |
batch_size = 128 | |
epochs = 40 | |
class_weights = torch.tensor(compute_class_weight('balanced', classes=[0, 1, 2], y=dataset['train']['labels']), dtype=torch.float) ** .5 | |
model = MLP(input_size=input_size, class_weights=class_weights) | |
criterion = model.get_loss_fn() | |
test_data = TensorDataset(torch.tensor(dataset['test']['embeddings']), torch.tensor(dataset['test']['labels'])) | |
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True) | |
loss, accuracy = eval_model(model, criterion, test_loader, test_data, show=False, | |
# save_as_filename=f'plots/confusion_matrix_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png' | |
) | |
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) | |
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=.2, patience=5, threshold=1e-4, min_lr=1e-7, verbose=True) | |
train_data = TensorDataset(torch.tensor(dataset['train']['embeddings']), torch.tensor(dataset['train']['labels'])) | |
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) | |
val_data = TensorDataset(torch.tensor(dataset['val']['embeddings']), torch.tensor(dataset['val']['labels'])) | |
val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True) | |
losses, accuracies = train_model(model, criterion, optimizer, lr_scheduler, train_loader, val_loader, train_data, val_data, epochs) | |
plot_training_metrics(losses, accuracies | |
# , save_as_filename=f'plots/training_metrics_plot_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png' | |
) | |
test_data = TensorDataset(torch.tensor(dataset['test']['embeddings']), torch.tensor(dataset['test']['labels'])) | |
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True) | |
loss, accuracy = eval_model(model, criterion, test_loader, test_data, show=False | |
# save_as_filename=f'plots/confusion_matrix_{datetime.now().strftime("%Y-%m-%d_%H-%M")}.png' | |
) | |
# torch.save(model.state_dict(), f'models/linear_head.pth') | |
# save_model(model, f'models/linear_head.safetensors') | |
# load_model(model, f'models/linear_head.safetensors') | |
# print(model) | |
# dataset.push_to_hub(f'CabraVC/vector_dataset_stratified_ttv_split_{datetime.now().strftime("%Y-%m-%d_%H-%M")}', private=True) | |