Spaces:
Running
Running
File size: 8,275 Bytes
a25563f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import os
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import json
import os
import torch
from scipy.ndimage import gaussian_filter
import cv2
# Importing from local modules
from tools import write2csv, setup_seed, Logger
from dataset import get_data, dataset_dict
from method import AdaCLIP_Trainer
from PIL import Image
import numpy as np
setup_seed(111)
def train(args):
assert os.path.isfile(args.ckt_path), f"Please check the path of pre-trained model, {args.ckt_path} is not valid."
# Configurations
batch_size = args.batch_size
image_size = args.image_size
device = 'cuda' if torch.cuda.is_available() else 'cpu'
save_fig = args.save_fig
# Logger
logger = Logger('log.txt')
# Print basic information
for key, value in sorted(vars(args).items()):
logger.info(f'{key} = {value}')
config_path = os.path.join('./model_configs', f'{args.model}.json')
# Prepare model
with open(config_path, 'r') as f:
model_configs = json.load(f)
# Set up the feature hierarchy
n_layers = model_configs['vision_cfg']['layers']
substage = n_layers // 4
features_list = [substage, substage * 2, substage * 3, substage * 4]
model = AdaCLIP_Trainer(
backbone=args.model,
feat_list=features_list,
input_dim=model_configs['vision_cfg']['width'],
output_dim=model_configs['embed_dim'],
learning_rate=0.,
device=device,
image_size=image_size,
prompting_depth=args.prompting_depth,
prompting_length=args.prompting_length,
prompting_branch=args.prompting_branch,
prompting_type=args.prompting_type,
use_hsf=args.use_hsf,
k_clusters=args.k_clusters
).to(device)
model.load(args.ckt_path)
if args.testing_model == 'dataset':
assert args.testing_data in dataset_dict.keys(), f"You entered {args.testing_data}, but we only support " \
f"{dataset_dict.keys()}"
save_root = args.save_path
csv_root = os.path.join(save_root, 'csvs')
image_root = os.path.join(save_root, 'images')
csv_path = os.path.join(csv_root, f'{args.testing_data}.csv')
image_dir = os.path.join(image_root, f'{args.testing_data}')
os.makedirs(image_dir, exist_ok=True)
test_data_cls_names, test_data, test_data_root = get_data(
dataset_type_list=args.testing_data,
transform=model.preprocess,
target_transform=model.transform,
training=False)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
save_fig_flag = save_fig
metric_dict = model.evaluation(
test_dataloader,
test_data_cls_names,
save_fig_flag,
image_dir,
)
for tag, data in metric_dict.items():
logger.info(
'{:>15} \t\tI-Auroc:{:.2f} \tI-F1:{:.2f} \tI-AP:{:.2f} \tP-Auroc:{:.2f} \tP-F1:{:.2f} \tP-AP:{:.2f}'.
format(tag,
data['auroc_im'],
data['f1_im'],
data['ap_im'],
data['auroc_px'],
data['f1_px'],
data['ap_px'])
)
for k in metric_dict.keys():
write2csv(metric_dict[k], test_data_cls_names, k, csv_path)
elif args.testing_model == 'image':
assert os.path.isfile(args.image_path), f"Please verify the input image path: {args.image_path}"
ori_image = cv2.resize(cv2.imread(args.image_path), (args.image_size, args.image_size))
pil_img = Image.open(args.image_path).convert('RGB')
img_input = model.preprocess(pil_img).unsqueeze(0)
img_input = img_input.to(model.device)
with torch.no_grad():
anomaly_map, anomaly_score = model.clip_model(img_input, [args.class_name], aggregation=True)
anomaly_map = anomaly_map[0, :, :]
anomaly_score = anomaly_score[0]
anomaly_map = anomaly_map.cpu().numpy()
anomaly_score = anomaly_score.cpu().numpy()
anomaly_map = gaussian_filter(anomaly_map, sigma=4)
anomaly_map = anomaly_map * 255
anomaly_map = anomaly_map.astype(np.uint8)
heat_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
vis_map = cv2.addWeighted(heat_map, 0.5, ori_image, 0.5, 0)
vis_map = cv2.hconcat([ori_image, vis_map])
save_path = os.path.join(args.save_path, args.save_name)
print(f"Anomaly detection results are saved in {save_path}, with an anomaly of {anomaly_score:.3f} ")
cv2.imwrite(save_path, vis_map)
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
if __name__ == '__main__':
parser = argparse.ArgumentParser("AdaCLIP", add_help=True)
# Paths and configurations
parser.add_argument("--ckt_path", type=str, default='weights/pretrained_mvtec_colondb.pth',
help="Path to the pre-trained model (default: weights/pretrained_mvtec_colondb.pth)")
parser.add_argument("--testing_model", type=str, default="dataset", choices=["dataset", "image"],
help="Model for testing (default: 'dataset')")
# for the dataset model
parser.add_argument("--testing_data", type=str, default="visa", help="Dataset for testing (default: 'visa')")
# for the image model
parser.add_argument("--image_path", type=str, default="asset/img.png",
help="Model for testing (default: 'asset/img.png')")
parser.add_argument("--class_name", type=str, default="candle",
help="The class name of the testing image (default: 'candle')")
parser.add_argument("--save_name", type=str, default="test.png",
help="Model for testing (default: 'dataset')")
parser.add_argument("--save_path", type=str, default='./workspaces',
help="Directory to save results (default: './workspaces')")
parser.add_argument("--model", type=str, default="ViT-L-14-336",
choices=["ViT-B-16", "ViT-B-32", "ViT-L-14", "ViT-L-14-336"],
help="The CLIP model to be used (default: 'ViT-L-14-336')")
parser.add_argument("--save_fig", type=str2bool, default=False,
help="Save figures for visualizations (default: False)")
# Hyper-parameters
parser.add_argument("--batch_size", type=int, default=1, help="Batch size (default: 1)")
parser.add_argument("--image_size", type=int, default=518, help="Size of the input images (default: 518)")
# Prompting parameters
parser.add_argument("--prompting_depth", type=int, default=4, help="Depth of prompting (default: 4)")
parser.add_argument("--prompting_length", type=int, default=5, help="Length of prompting (default: 5)")
parser.add_argument("--prompting_type", type=str, default='SD', choices=['', 'S', 'D', 'SD'],
help="Type of prompting. 'S' for Static, 'D' for Dynamic, 'SD' for both (default: 'SD')")
parser.add_argument("--prompting_branch", type=str, default='VL', choices=['', 'V', 'L', 'VL'],
help="Branch of prompting. 'V' for Visual, 'L' for Language, 'VL' for both (default: 'VL')")
parser.add_argument("--use_hsf", type=str2bool, default=True,
help="Use HSF for aggregation. If False, original class embedding is used (default: True)")
parser.add_argument("--k_clusters", type=int, default=20, help="Number of clusters (default: 20)")
args = parser.parse_args()
if args.batch_size != 1:
raise NotImplementedError(
"Currently, only batch size of 1 is supported due to unresolved bugs. Please set --batch_size to 1.")
train(args)
|