File size: 8,275 Bytes
a25563f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import os
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import json
import os
import torch
from scipy.ndimage import gaussian_filter
import cv2

# Importing from local modules
from tools import write2csv, setup_seed, Logger
from dataset import get_data, dataset_dict
from method import AdaCLIP_Trainer
from PIL import Image
import numpy as np

setup_seed(111)

def train(args):
    assert os.path.isfile(args.ckt_path), f"Please check the path of pre-trained model, {args.ckt_path} is not valid."

    # Configurations
    batch_size = args.batch_size
    image_size = args.image_size
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    save_fig = args.save_fig

    # Logger
    logger = Logger('log.txt')

    # Print basic information
    for key, value in sorted(vars(args).items()):
        logger.info(f'{key} = {value}')


    config_path = os.path.join('./model_configs', f'{args.model}.json')

    # Prepare model
    with open(config_path, 'r') as f:
        model_configs = json.load(f)

    # Set up the feature hierarchy
    n_layers = model_configs['vision_cfg']['layers']
    substage = n_layers // 4
    features_list = [substage, substage * 2, substage * 3, substage * 4]

    model = AdaCLIP_Trainer(
        backbone=args.model,
        feat_list=features_list,
        input_dim=model_configs['vision_cfg']['width'],
        output_dim=model_configs['embed_dim'],
        learning_rate=0.,
        device=device,
        image_size=image_size,
        prompting_depth=args.prompting_depth,
        prompting_length=args.prompting_length,
        prompting_branch=args.prompting_branch,
        prompting_type=args.prompting_type,
        use_hsf=args.use_hsf,
        k_clusters=args.k_clusters
    ).to(device)

    model.load(args.ckt_path)

    if args.testing_model == 'dataset':
        assert args.testing_data in dataset_dict.keys(), f"You entered {args.testing_data}, but we only support " \
                                                         f"{dataset_dict.keys()}"

        save_root = args.save_path
        csv_root = os.path.join(save_root, 'csvs')
        image_root = os.path.join(save_root, 'images')
        csv_path = os.path.join(csv_root, f'{args.testing_data}.csv')
        image_dir = os.path.join(image_root, f'{args.testing_data}')
        os.makedirs(image_dir, exist_ok=True)

        test_data_cls_names, test_data, test_data_root = get_data(
            dataset_type_list=args.testing_data,
            transform=model.preprocess,
            target_transform=model.transform,
            training=False)

        test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
        save_fig_flag = save_fig

        metric_dict = model.evaluation(
            test_dataloader,
            test_data_cls_names,
            save_fig_flag,
            image_dir,
        )

        for tag, data in metric_dict.items():
            logger.info(
                '{:>15} \t\tI-Auroc:{:.2f} \tI-F1:{:.2f} \tI-AP:{:.2f} \tP-Auroc:{:.2f} \tP-F1:{:.2f} \tP-AP:{:.2f}'.
                    format(tag,
                           data['auroc_im'],
                           data['f1_im'],
                           data['ap_im'],
                           data['auroc_px'],
                           data['f1_px'],
                           data['ap_px'])
            )


        for k in metric_dict.keys():
            write2csv(metric_dict[k], test_data_cls_names, k, csv_path)

    elif args.testing_model == 'image':
        assert os.path.isfile(args.image_path), f"Please verify the input image path: {args.image_path}"
        ori_image = cv2.resize(cv2.imread(args.image_path), (args.image_size, args.image_size))
        pil_img = Image.open(args.image_path).convert('RGB')

        img_input = model.preprocess(pil_img).unsqueeze(0)
        img_input = img_input.to(model.device)

        with torch.no_grad():
            anomaly_map, anomaly_score = model.clip_model(img_input, [args.class_name], aggregation=True)

        anomaly_map = anomaly_map[0, :, :]
        anomaly_score = anomaly_score[0]
        anomaly_map = anomaly_map.cpu().numpy()
        anomaly_score = anomaly_score.cpu().numpy()

        anomaly_map = gaussian_filter(anomaly_map, sigma=4)
        anomaly_map = anomaly_map * 255
        anomaly_map = anomaly_map.astype(np.uint8)

        heat_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
        vis_map = cv2.addWeighted(heat_map, 0.5, ori_image, 0.5, 0)

        vis_map = cv2.hconcat([ori_image, vis_map])
        save_path = os.path.join(args.save_path, args.save_name)
        print(f"Anomaly detection results are saved in {save_path}, with an anomaly of {anomaly_score:.3f} ")
        cv2.imwrite(save_path, vis_map)

def str2bool(v):
    return v.lower() in ("yes", "true", "t", "1")

if __name__ == '__main__':
    parser = argparse.ArgumentParser("AdaCLIP", add_help=True)

    # Paths and configurations
    parser.add_argument("--ckt_path", type=str, default='weights/pretrained_mvtec_colondb.pth',
                        help="Path to the pre-trained model (default: weights/pretrained_mvtec_colondb.pth)")

    parser.add_argument("--testing_model", type=str, default="dataset", choices=["dataset", "image"],
                        help="Model for testing (default: 'dataset')")

    # for the dataset model
    parser.add_argument("--testing_data", type=str, default="visa", help="Dataset for testing (default: 'visa')")

    # for the image model
    parser.add_argument("--image_path", type=str, default="asset/img.png",
                        help="Model for testing (default: 'asset/img.png')")
    parser.add_argument("--class_name", type=str, default="candle",
                        help="The class name of the testing image (default: 'candle')")
    parser.add_argument("--save_name", type=str, default="test.png",
                        help="Model for testing (default: 'dataset')")


    parser.add_argument("--save_path", type=str, default='./workspaces',
                        help="Directory to save results (default: './workspaces')")

    parser.add_argument("--model", type=str, default="ViT-L-14-336",
                        choices=["ViT-B-16", "ViT-B-32", "ViT-L-14", "ViT-L-14-336"],
                        help="The CLIP model to be used (default: 'ViT-L-14-336')")

    parser.add_argument("--save_fig", type=str2bool, default=False,
                        help="Save figures for visualizations (default: False)")

    # Hyper-parameters
    parser.add_argument("--batch_size", type=int, default=1, help="Batch size (default: 1)")
    parser.add_argument("--image_size", type=int, default=518, help="Size of the input images (default: 518)")

    # Prompting parameters
    parser.add_argument("--prompting_depth", type=int, default=4, help="Depth of prompting (default: 4)")
    parser.add_argument("--prompting_length", type=int, default=5, help="Length of prompting (default: 5)")
    parser.add_argument("--prompting_type", type=str, default='SD', choices=['', 'S', 'D', 'SD'],
                        help="Type of prompting. 'S' for Static, 'D' for Dynamic, 'SD' for both (default: 'SD')")
    parser.add_argument("--prompting_branch", type=str, default='VL', choices=['', 'V', 'L', 'VL'],
                        help="Branch of prompting. 'V' for Visual, 'L' for Language, 'VL' for both (default: 'VL')")

    parser.add_argument("--use_hsf", type=str2bool, default=True,
                        help="Use HSF for aggregation. If False, original class embedding is used (default: True)")
    parser.add_argument("--k_clusters", type=int, default=20, help="Number of clusters (default: 20)")

    args = parser.parse_args()

    if args.batch_size != 1:
        raise NotImplementedError(
            "Currently, only batch size of 1 is supported due to unresolved bugs. Please set --batch_size to 1.")

    train(args)