Spaces:
Running
Running
File size: 8,345 Bytes
a25563f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import cv2
import torchvision.transforms as transforms
from scipy.ndimage import gaussian_filter
from loss import FocalLoss, BinaryDiceLoss
from tools import visualization, calculate_metric, calculate_average_metric
from .adaclip import *
from .custom_clip import create_model_and_transforms
class AdaCLIP_Trainer(nn.Module):
def __init__(
self,
# clip-related
backbone, feat_list, input_dim, output_dim,
# learning-related
learning_rate, device, image_size,
# model settings
prompting_depth=3, prompting_length=2,
prompting_branch='VL', prompting_type='SD',
use_hsf=True, k_clusters=20,
):
super(AdaCLIP_Trainer, self).__init__()
self.device = device
self.feat_list = feat_list
self.image_size = image_size
self.prompting_branch = prompting_branch
self.prompting_type = prompting_type
self.loss_focal = FocalLoss()
self.loss_dice = BinaryDiceLoss()
########### different model choices
freeze_clip, _, self.preprocess = create_model_and_transforms(backbone, image_size,
pretrained='openai')
freeze_clip = freeze_clip.to(device)
freeze_clip.eval()
self.clip_model = AdaCLIP(freeze_clip=freeze_clip,
text_channel=output_dim,
visual_channel=input_dim,
prompting_length=prompting_length,
prompting_depth=prompting_depth,
prompting_branch=prompting_branch,
prompting_type=prompting_type,
use_hsf=use_hsf,
k_clusters=k_clusters,
output_layers=feat_list,
device=device,
image_size=image_size).to(device)
self.transform = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.CenterCrop(image_size),
transforms.ToTensor()
])
self.preprocess.transforms[0] = transforms.Resize(size=(image_size, image_size),
interpolation=transforms.InterpolationMode.BICUBIC,
max_size=None)
self.preprocess.transforms[1] = transforms.CenterCrop(size=(image_size, image_size))
# update parameters
self.learnable_paramter_list = [
'text_prompter',
'visual_prompter',
'patch_token_layer',
'cls_token_layer',
'dynamic_visual_prompt_generator',
'dynamic_text_prompt_generator'
]
self.params_to_update = []
for name, param in self.clip_model.named_parameters():
# print(name)
for update_name in self.learnable_paramter_list:
if update_name in name:
# print(f'updated parameters--{name}: {update_name}')
self.params_to_update.append(param)
# build the optimizer
self.optimizer = torch.optim.AdamW(self.params_to_update, lr=learning_rate, betas=(0.5, 0.999))
def save(self, path):
self.save_dict = {}
for param, value in self.state_dict().items():
for update_name in self.learnable_paramter_list:
if update_name in param:
# print(f'{param}: {update_name}')
self.save_dict[param] = value
break
torch.save(self.save_dict, path)
def load(self, path):
self.load_state_dict(torch.load(path, map_location=self.device), strict=False)
def train_one_batch(self, items):
image = items['img'].to(self.device)
cls_name = items['cls_name']
# pixel level
anomaly_map, anomaly_score = self.clip_model(image, cls_name, aggregation=False)
if not isinstance(anomaly_map, list):
anomaly_map = [anomaly_map]
# losses
gt = items['img_mask'].to(self.device)
gt = gt.squeeze()
gt[gt > 0.5] = 1
gt[gt <= 0.5] = 0
is_anomaly = items['anomaly'].to(self.device)
is_anomaly[is_anomaly > 0.5] = 1
is_anomaly[is_anomaly <= 0.5] = 0
loss = 0
# classification loss
classification_loss = self.loss_focal(anomaly_score, is_anomaly.unsqueeze(1))
loss += classification_loss
# seg loss
seg_loss = 0
for am, in zip(anomaly_map):
seg_loss += (self.loss_focal(am, gt) + self.loss_dice(am[:, 1, :, :], gt) +
self.loss_dice(am[:, 0, :, :], 1-gt))
loss += seg_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss
def train_epoch(self, loader):
self.clip_model.train()
loss_list = []
for items in loader:
loss = self.train_one_batch(items)
loss_list.append(loss.item())
return np.mean(loss_list)
@torch.no_grad()
def evaluation(self, dataloader, obj_list, save_fig, save_fig_dir=None):
self.clip_model.eval()
results = {}
results['cls_names'] = []
results['imgs_gts'] = []
results['anomaly_scores'] = []
results['imgs_masks'] = []
results['anomaly_maps'] = []
results['imgs'] = []
results['names'] = []
with torch.no_grad(), torch.cuda.amp.autocast():
image_indx = 0
for indx, items in enumerate(dataloader):
if save_fig:
path = items['img_path']
for _path in path:
vis_image = cv2.resize(cv2.imread(_path), (self.image_size, self.image_size))
results['imgs'].append(vis_image)
cls_name = items['cls_name']
for _cls_name in cls_name:
image_indx += 1
results['names'].append('{:}-{:03d}'.format(_cls_name, image_indx))
image = items['img'].to(self.device)
cls_name = items['cls_name']
results['cls_names'].extend(cls_name)
gt_mask = items['img_mask']
gt_mask[gt_mask > 0.5], gt_mask[gt_mask <= 0.5] = 1, 0
for _gt_mask in gt_mask:
results['imgs_masks'].append(_gt_mask.squeeze(0).numpy()) # px
# pixel level
anomaly_map, anomaly_score = self.clip_model(image, cls_name, aggregation=True)
anomaly_map = anomaly_map.cpu().numpy()
anomaly_score = anomaly_score.cpu().numpy()
for _anomaly_map, _anomaly_score in zip(anomaly_map, anomaly_score):
_anomaly_map = gaussian_filter(_anomaly_map, sigma=4)
results['anomaly_maps'].append(_anomaly_map)
results['anomaly_scores'].append(_anomaly_score)
is_anomaly = np.array(items['anomaly'])
for _is_anomaly in is_anomaly:
results['imgs_gts'].append(_is_anomaly)
# visualization
if save_fig:
print('saving fig.....')
visualization.plot_sample_cv2(
results['names'],
results['imgs'],
{'AdaCLIP': results['anomaly_maps']},
results['imgs_masks'],
save_fig_dir
)
metric_dict = dict()
for obj in obj_list:
metric_dict[obj] = dict()
for obj in obj_list:
metric = calculate_metric(results, obj)
obj_full_name = f'{obj}'
metric_dict[obj_full_name] = metric
metric_dict['Average'] = calculate_average_metric(metric_dict)
return metric_dict
|