AdaCLIP / train.py
Caoyunkang's picture
first commit
a25563f verified
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import os
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import json
import os
import torch
# Importing from local modules
from tools import write2csv, setup_paths, setup_seed, log_metrics, Logger
from dataset import get_data
from method import AdaCLIP_Trainer
setup_seed(111)
def train(args):
# Configurations
epochs = args.epoch
learning_rate = args.learning_rate
batch_size = args.batch_size
image_size = args.image_size
device = 'cuda' if torch.cuda.is_available() else 'cpu'
save_fig = args.save_fig
# Set up paths
model_name, image_dir, csv_path, log_path, ckp_path, tensorboard_logger = setup_paths(args)
# Logger
logger = Logger(log_path)
# Print basic information
for key, value in sorted(vars(args).items()):
logger.info(f'{key} = {value}')
logger.info('Model name: {:}'.format(model_name))
config_path = os.path.join('./model_configs', f'{args.model}.json')
# Prepare model
with open(config_path, 'r') as f:
model_configs = json.load(f)
# Set up the feature hierarchy
n_layers = model_configs['vision_cfg']['layers']
substage = n_layers // 4
features_list = [substage, substage * 2, substage * 3, substage * 4]
model = AdaCLIP_Trainer(
backbone=args.model,
feat_list=features_list,
input_dim=model_configs['vision_cfg']['width'],
output_dim=model_configs['embed_dim'],
learning_rate=learning_rate,
device=device,
image_size=image_size,
prompting_depth=args.prompting_depth,
prompting_length=args.prompting_length,
prompting_branch=args.prompting_branch,
prompting_type=args.prompting_type,
use_hsf=args.use_hsf,
k_clusters=args.k_clusters
).to(device)
train_data_cls_names, train_data, train_data_root = get_data(
dataset_type_list=args.training_data,
transform=model.preprocess,
target_transform=model.transform,
training=True)
test_data_cls_names, test_data, test_data_root = get_data(
dataset_type_list=args.testing_data,
transform=model.preprocess,
target_transform=model.transform,
training=False)
logger.info('Data Root: training, {:}; testing, {:}'.format(train_data_root, test_data_root))
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
# Typically, we use MVTec or VisA as the validation set. The best model from this validation
# process is then used for zero-shot anomaly detection on novel categories.
best_f1 = -1e1
for epoch in tqdm(range(epochs)):
loss = model.train_epoch(train_dataloader)
# Logs
if (epoch + 1) % args.print_freq == 0:
logger.info('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, epochs, loss))
tensorboard_logger.add_scalar('loss', loss, epoch)
# Validation
if (epoch + 1) % args.valid_freq == 0 or (epoch == epochs - 1):
if epoch == epochs - 1:
save_fig_flag = save_fig
else:
save_fig_flag = False
logger.info('=============================Testing ====================================')
metric_dict = model.evaluation(
test_dataloader,
test_data_cls_names,
save_fig_flag,
image_dir,
)
log_metrics(
metric_dict,
logger,
tensorboard_logger,
epoch
)
f1_px = metric_dict['Average']['f1_px']
# Save best
if f1_px > best_f1:
for k in metric_dict.keys():
write2csv(metric_dict[k], test_data_cls_names, k, csv_path)
ckp_path_best = ckp_path + '_best.pth'
model.save(ckp_path_best)
best_f1 = f1_px
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
if __name__ == '__main__':
parser = argparse.ArgumentParser("AdaCLIP", add_help=True)
# Paths and configurations
parser.add_argument("--training_data", type=str, default=["mvtec", "colondb"], nargs='+',
help="Datasets for training (default: ['mvtec', 'colondb'])")
parser.add_argument("--testing_data", type=str, default="visa", help="Dataset for testing (default: 'visa')")
parser.add_argument("--save_path", type=str, default='./workspaces',
help="Directory to save results (default: './workspaces')")
parser.add_argument("--model", type=str, default="ViT-L-14-336",
choices=["ViT-B-16", "ViT-B-32", "ViT-L-14", "ViT-L-14-336"],
help="The CLIP model to be used (default: 'ViT-L-14-336')")
parser.add_argument("--save_fig", type=str2bool, default=False,
help="Save figures for visualizations (default: False)")
parser.add_argument("--ckt_path", type=str, default='', help="Path to the pre-trained model (default: '')")
# Hyper-parameters
parser.add_argument("--exp_indx", type=int, default=0, help="Index of the experiment (default: 0)")
parser.add_argument("--epoch", type=int, default=5, help="Number of epochs (default: 5)")
parser.add_argument("--learning_rate", type=float, default=0.01, help="Learning rate (default: 0.01)")
parser.add_argument("--batch_size", type=int, default=1, help="Batch size (default: 1)")
parser.add_argument("--image_size", type=int, default=518, help="Size of the input images (default: 518)")
parser.add_argument("--print_freq", type=int, default=1, help="Frequency of print statements (default: 1)")
parser.add_argument("--valid_freq", type=int, default=1, help="Frequency of validation (default: 1)")
# Prompting parameters
parser.add_argument("--prompting_depth", type=int, default=4, help="Depth of prompting (default: 4)")
parser.add_argument("--prompting_length", type=int, default=5, help="Length of prompting (default: 5)")
parser.add_argument("--prompting_type", type=str, default='SD', choices=['', 'S', 'D', 'SD'],
help="Type of prompting. 'S' for Static, 'D' for Dynamic, 'SD' for both (default: 'SD')")
parser.add_argument("--prompting_branch", type=str, default='VL', choices=['', 'V', 'L', 'VL'],
help="Branch of prompting. 'V' for Visual, 'L' for Language, 'VL' for both (default: 'VL')")
parser.add_argument("--use_hsf", type=str2bool, default=True,
help="Use HSF for aggregation. If False, original class embedding is used (default: True)")
parser.add_argument("--k_clusters", type=int, default=20, help="Number of clusters (default: 20)")
args = parser.parse_args()
train(args)
if args.batch_size != 1:
raise NotImplementedError(
"Currently, only batch size of 1 is supported due to unresolved bugs. Please set --batch_size to 1.")
train(args)