CazC's picture
Upload 49 files
9c98fd2 verified
import importlib
import math
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import imageio
import numpy as np
import PIL.Image
import rembg
import torch
import torch.nn as nn
import torch.nn.functional as F
import trimesh
from omegaconf import DictConfig, OmegaConf
from PIL import Image
def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg)
return scfg
def find_class(cls_string):
module_string = ".".join(cls_string.split(".")[:-1])
cls_name = cls_string.split(".")[-1]
module = importlib.import_module(module_string, package=None)
cls = getattr(module, cls_name)
return cls
def get_intrinsic_from_fov(fov, H, W, bs=-1):
focal_length = 0.5 * H / np.tan(0.5 * fov)
intrinsic = np.identity(3, dtype=np.float32)
intrinsic[0, 0] = focal_length
intrinsic[1, 1] = focal_length
intrinsic[0, 2] = W / 2.0
intrinsic[1, 2] = H / 2.0
if bs > 0:
intrinsic = intrinsic[None].repeat(bs, axis=0)
return torch.from_numpy(intrinsic)
class BaseModule(nn.Module):
@dataclass
class Config:
pass
cfg: Config # add this to every subclass of BaseModule to enable static type checking
def __init__(
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
) -> None:
super().__init__()
self.cfg = parse_structured(self.Config, cfg)
self.configure(*args, **kwargs)
def configure(self, *args, **kwargs) -> None:
raise NotImplementedError
class ImagePreprocessor:
def convert_and_resize(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
size: int,
):
if isinstance(image, PIL.Image.Image):
image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
elif isinstance(image, np.ndarray):
if image.dtype == np.uint8:
image = torch.from_numpy(image.astype(np.float32) / 255.0)
else:
image = torch.from_numpy(image)
elif isinstance(image, torch.Tensor):
pass
batched = image.ndim == 4
if not batched:
image = image[None, ...]
image = F.interpolate(
image.permute(0, 3, 1, 2),
(size, size),
mode="bilinear",
align_corners=False,
antialias=True,
).permute(0, 2, 3, 1)
if not batched:
image = image[0]
return image
def __call__(
self,
image: Union[
PIL.Image.Image,
np.ndarray,
torch.FloatTensor,
List[PIL.Image.Image],
List[np.ndarray],
List[torch.FloatTensor],
],
size: int,
) -> Any:
if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
image = self.convert_and_resize(image, size)
else:
if not isinstance(image, list):
image = [image]
image = [self.convert_and_resize(im, size) for im in image]
image = torch.stack(image, dim=0)
return image
def rays_intersect_bbox(
rays_o: torch.Tensor,
rays_d: torch.Tensor,
radius: float,
near: float = 0.0,
valid_thresh: float = 0.01,
):
input_shape = rays_o.shape[:-1]
rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3)
rays_d_valid = torch.where(
rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d
)
if type(radius) in [int, float]:
radius = torch.FloatTensor(
[[-radius, radius], [-radius, radius], [-radius, radius]]
).to(rays_o.device)
radius = (
1.0 - 1.0e-3
) * radius # tighten the radius to make sure the intersection point lies in the bounding box
interx0 = (radius[..., 1] - rays_o) / rays_d_valid
interx1 = (radius[..., 0] - rays_o) / rays_d_valid
t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near)
t_far = torch.maximum(interx0, interx1).amin(dim=-1)
# check wheter a ray intersects the bbox or not
rays_valid = t_far - t_near > valid_thresh
t_near[torch.where(~rays_valid)] = 0.0
t_far[torch.where(~rays_valid)] = 0.0
t_near = t_near.view(*input_shape, 1)
t_far = t_far.view(*input_shape, 1)
rays_valid = rays_valid.view(*input_shape)
return t_near, t_far, rays_valid
def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any:
if chunk_size <= 0:
return func(*args, **kwargs)
B = None
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, torch.Tensor):
B = arg.shape[0]
break
assert (
B is not None
), "No tensor found in args or kwargs, cannot determine batch size."
out = defaultdict(list)
out_type = None
# max(1, B) to support B == 0
for i in range(0, max(1, B), chunk_size):
out_chunk = func(
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
if out_chunk is None:
continue
out_type = type(out_chunk)
if isinstance(out_chunk, torch.Tensor):
out_chunk = {0: out_chunk}
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
chunk_length = len(out_chunk)
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
elif isinstance(out_chunk, dict):
pass
else:
print(
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
)
exit(1)
for k, v in out_chunk.items():
v = v if torch.is_grad_enabled() else v.detach()
out[k].append(v)
if out_type is None:
return None
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
for k, v in out.items():
if all([vv is None for vv in v]):
# allow None in return value
out_merged[k] = None
elif all([isinstance(vv, torch.Tensor) for vv in v]):
out_merged[k] = torch.cat(v, dim=0)
else:
raise TypeError(
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
)
if out_type is torch.Tensor:
return out_merged[0]
elif out_type in [tuple, list]:
return out_type([out_merged[i] for i in range(chunk_length)])
elif out_type is dict:
return out_merged
ValidScale = Union[Tuple[float, float], torch.FloatTensor]
def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, torch.FloatTensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "softplus":
return lambda x: F.softplus(x)
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
normalize: bool = True,
) -> torch.FloatTensor:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1)
if normalize:
directions = F.normalize(directions, dim=-1)
return directions
def get_rays(
directions,
c2w,
keepdim=False,
normalize=False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
if normalize:
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_spherical_cameras(
n_views: int,
elevation_deg: float,
camera_distance: float,
fovy_deg: float,
height: int,
width: int,
):
azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views]
elevation_deg = torch.full_like(azimuth_deg, elevation_deg)
camera_distances = torch.full_like(elevation_deg, camera_distance)
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
# convert spherical coordinates to cartesian coordinates
# right hand coordinate system, x back, y right, z up
# elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
camera_positions = torch.stack(
[
camera_distances * torch.cos(elevation) * torch.cos(azimuth),
camera_distances * torch.cos(elevation) * torch.sin(azimuth),
camera_distances * torch.sin(elevation),
],
dim=-1,
)
# default scene center at origin
center = torch.zeros_like(camera_positions)
# default camera up direction as +z
up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1)
fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180
lookat = F.normalize(center - camera_positions, dim=-1)
right = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
c2w3x4 = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
dim=-1,
)
c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
c2w[:, 3, 3] = 1.0
# get directions by dividing directions_unit_focal by focal length
focal_length = 0.5 * height / torch.tan(0.5 * fovy)
directions_unit_focal = get_ray_directions(
H=height,
W=width,
focal=1.0,
)
directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1)
directions[:, :, :, :2] = (
directions[:, :, :, :2] / focal_length[:, None, None, None]
)
# must use normalize=True to normalize directions here
rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True)
return rays_o, rays_d
def remove_background(
image: PIL.Image.Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def resize_foreground(
image: PIL.Image.Image,
ratio: float,
) -> PIL.Image.Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = PIL.Image.fromarray(new_image)
return new_image
def save_video(
frames: List[PIL.Image.Image],
output_path: str,
fps: int = 30,
):
# use imageio to save video
frames = [np.array(frame) for frame in frames]
writer = imageio.get_writer(output_path, fps=fps)
for frame in frames:
writer.append_data(frame)
writer.close()
def to_gradio_3d_orientation(mesh):
mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0]))
mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0]))
return mesh