File size: 4,858 Bytes
37840e7
 
5514789
 
ea9a6b2
5514789
37840e7
c283f36
5514789
 
 
 
 
5212158
 
 
 
 
 
 
 
 
c5c5a80
5212158
 
 
 
5514789
956147e
 
6af6ea2
5212158
d2eaa46
ea9a6b2
d2eaa46
5514789
c283f36
5514789
 
36f850c
5514789
 
 
 
 
 
 
 
c283f36
 
5514789
 
d2eaa46
 
 
 
 
 
 
 
 
 
 
5514789
 
 
 
 
 
c283f36
5514789
c283f36
5514789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08d09e
c283f36
7e8f68e
 
5514789
 
 
 
c283f36
5514789
 
c08d09e
5514789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c5a80
5212158
 
5514789
 
5212158
5514789
8f8d235
 
5514789
c283f36
 
5514789
5212158
5514789
c5c5a80
8f8d235
 
5514789
c283f36
 
5212158
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
torch.jit.script = lambda f: f
from zoedepth.utils.misc import colorize, save_raw_16bit
from zoedepth.utils.geometry import depth_to_points, create_triangles
from marigold_depth_estimation import MarigoldPipeline
import gradio as gr
import spaces

from PIL import Image
import numpy as np
import trimesh
from functools import partial
import tempfile


css = """
#img-display-container {
    max-height: 50vh;
    }
#img-display-input {
    max-height: 40vh;
    }

#img-display-output {
    max-height: 40vh;
    }
"""

# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DEVICE = 'cuda'
model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to("cpu").eval()

CHECKPOINT = "prs-eth/marigold-v1-0"
pipe = MarigoldPipeline.from_pretrained(CHECKPOINT)

# ----------- Depth functions
@spaces.GPU(enable_queue=True)
def save_raw_16bit(depth, fpath="raw.png"):
    if isinstance(depth, torch.Tensor):
        depth = depth.squeeze().cpu().numpy()
    
    assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
    assert depth.ndim == 2, "Depth must be 2D"
    depth = depth * 256  # scale for 16-bit png
    depth = depth.astype(np.uint16)
    return depth

@spaces.GPU(enable_queue=True)
def process_image(image: Image.Image):
    global model
    image = image.convert("RGB")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    # model.to(device)
    # depth = model.infer_pil(image)

    # processed_array = save_raw_16bit(colorize(depth)[:, :, 0])
    # return Image.fromarray(processed_array)

    model.to(device)
    
    # # inference
    processed_array = pipe(image)["depth"]

    return Image.fromarray(processed_array)

# ----------- Depth functions

# ----------- Mesh functions
@spaces.GPU(enable_queue=True)
def depth_edges_mask(depth):
    global model
    """Returns a mask of edges in the depth map.
    Args:
    depth: 2D numpy array of shape (H, W) with dtype float32.
    Returns:
    mask: 2D numpy array of shape (H, W) with dtype bool.
    """
    # Compute the x and y gradients of the depth map.
    depth_dx, depth_dy = np.gradient(depth)
    # Compute the gradient magnitude.
    depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
    # Compute the edge mask.
    mask = depth_grad > 0.05
    return mask

@spaces.GPU(enable_queue=True)
def predict_depth(image):
    global model
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    depth = model.infer_pil(image)
    return depth

@spaces.GPU(enable_queue=True)
def get_mesh(image: Image.Image, keep_edges=True):
    image.thumbnail((1024,1024))  # limit the size of the input image

    depth = predict_depth(image)
    pts3d = depth_to_points(depth[None])
    pts3d = pts3d.reshape(-1, 3)

    # Create a trimesh mesh from the points
    # Each pixel is connected to its 4 neighbors
    # colors are the RGB values of the image

    verts = pts3d.reshape(-1, 3)
    image = np.array(image)
    if keep_edges:
        triangles = create_triangles(image.shape[0], image.shape[1])
    else:
        triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth))

    colors = image.reshape(-1, 3)
    mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)

    # Save as glb
    glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
    glb_path = glb_file.name
    mesh.export(glb_path)
    return glb_path

# ----------- Mesh functions

title = "# ZoeDepth"
description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**."""

with gr.Blocks(css=css) as API:
    gr.Markdown(title)
    gr.Markdown(description)
    with gr.Tab("Depth Prediction"):
        with gr.Row():
            inputs=gr.Image(label="Input Image", type='pil', height=500)  # Input is an image
            outputs=gr.Image(label="Depth Map", type='pil', height=500)  # Output is also an image
        generate_btn = gr.Button(value="Generate")
        # generate_btn.click(partial(process_image, model), inputs=inputs, outputs=outputs, api_name="generate_depth")
        generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth")
        
    with gr.Tab("Image to 3D"):
        with gr.Row():
            with gr.Column():
                inputs=[gr.Image(label="Input Image", type='pil', height=500), gr.Checkbox(label="Keep occlusion edges", value=True)]
            outputs=gr.Model3D(label="3D Mesh", clear_color=[1.0, 1.0, 1.0, 1.0], height=500)
        generate_btn = gr.Button(value="Generate")
        # generate_btn.click(partial(get_mesh, model), inputs=inputs, outputs=outputs, api_name="generate_mesh")
        generate_btn.click(get_mesh, inputs=inputs, outputs=outputs, api_name="generate_mesh")

if __name__ == '__main__':
    API.launch()