Spaces:
Sleeping
Sleeping
File size: 6,167 Bytes
44e30d2 5440a34 44e30d2 f4453f1 44e30d2 89c1167 6fc56b6 f4453f1 5440a34 f4453f1 ebbf257 f4453f1 5440a34 f4453f1 5440a34 f4453f1 5440a34 f4453f1 5440a34 f4453f1 5440a34 f4453f1 5440a34 3acc3fd 5440a34 3acc3fd f4453f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import random
import numpy as np
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from PIL import Image
from groundingdino.util.inference import load_model
from groundingdino.util.inference import predict as grounding_dino_predict
import groundingdino.datasets.transforms as T
import torch
from torchvision.ops import box_convert
from torchvision.transforms.functional import to_tensor
from torchvision.transforms import GaussianBlur
# Define a custom transform for Gaussian blur
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
if x.ndim == 4:
for i in range(x.shape[0]):
if random.random() < p:
kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
sigma = random.uniform(sigma_min, sigma_max)
x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
return x
# Custom Label Function
def custom_label_func(fpath):
# this directs the labels to be 2 levels up from the image folder
label = fpath.parents[2].name
return label
# this function only describes how much a singular value in al ist stands out.
# if all values in the lsit are high or low this is 1
# the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
# the larger the gap between the dissimilar numbers and the simialr number the smaller this number
# only able to interpret probabilities or values between 0 and 1
# this function outputs an estimate an inverse of the classification confidence based on the probabilities of all the classes.
# the wedge threshold splits the data on a threshold with a magnitude of a positive int to force a ledge/peak in the data
def unkown_prob_calc(probs, wedge_threshold, wedge_magnitude=1, wedge='strict'):
if wedge =='strict':
increase_var = (1/(wedge_magnitude))
decrease_var = (wedge_magnitude)
if wedge =='dynamic': # this allows pointsthat are furhter from the threshold ot be moved less and points clsoer to be moved more
increase_var = (1/(wedge_magnitude*((1-np.abs(probs-wedge_threshold)))))
decrease_var = (wedge_magnitude*((1-np.abs(probs-wedge_threshold))))
else:
print("Error: use 'strict' (default) or 'dynamic' as options for the wedge parameter!")
probs = np.where(probs>=wedge_threshold , probs**increase_var, probs)
probs = np.where(probs<=wedge_threshold , probs**decrease_var, probs)
diff_matrix = np.abs(probs[:, np.newaxis] - probs)
diff_matrix_sum = np.sum(diff_matrix)
probs_sum = np.sum(probs)
class_val = (diff_matrix_sum/probs_sum)
max_class_val = ((len(probs)-1)*2)
kown_prob = class_val/max_class_val
unknown_prob = 1-kown_prob
return(unknown_prob)
def load_image(image_source):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = image_source.convert("RGB")
image_transformed, _ = transform(image_source, None)
return image_transformed
# load object detection model
od_model = load_model(
model_checkpoint_path="groundingdino_swint_ogc.pth",
model_config_path="GroundingDINO_SwinT_OGC.cfg.py",
device="cpu")
def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
TEXT_PROMPT = prompt
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25
DEVICE = device # cuda or cpu
# Convert numpy array to PIL Image if needed
if isinstance(og_image, np.ndarray):
og_image_obj = Image.fromarray(og_image)
else:
og_image_obj = og_image # Assuming og_image is already a PIL Image
# Transform the image
image_transformed = load_image(image_source = og_image_obj)
# Your model prediction code here...
boxes, logits, phrases = grounding_dino_predict(
model=model,
image=image_transformed,
caption=TEXT_PROMPT,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD,
device=DEVICE)
# Use og_image_obj directly for further processing
height, width = og_image_obj.size
boxes_norm = boxes * torch.Tensor([height, width, height, width])
xyxy = box_convert(
boxes=boxes_norm,
in_fmt="cxcywh",
out_fmt="xyxy").numpy()
img_lst = []
for i in range(len(boxes_norm)):
crop_img = og_image_obj.crop((xyxy[i]))
img_lst.append(crop_img)
return (img_lst)
# load beetle classifier model
repo_id="ChristopherMarais/beetle-model"
bc_model = from_pretrained_fastai(repo_id)
# get class names
labels = np.append(np.array(bc_model.dls.vocab), "Unknown")
def predict_beetle(img):
# Split image into smaller images of detected objects
image_lst = detect_objects(og_image=img, model=od_model, prompt="bug . insect", device="cpu")
# get predictions for all segments
conf_dict_lst = []
output_lst = []
img_cnt = len(image_lst)
for i in range(0,img_cnt):
prob_ar = np.array(bc_model.predict(image_lst[i])[2])
unkown_prob = unkown_prob_calc(probs=prob_ar, wedge_threshold=0.85, wedge_magnitude=5, wedge='dynamic')
prob_ar = np.append(prob_ar, unkown_prob)
prob_ar = np.around(prob_ar*100, decimals=1)
conf_dict = {labels[i]: float(prob_ar[i]) for i in range(len(prob_ar))}
conf_dict = dict(sorted(conf_dict.items(), key=lambda item: item[1], reverse=True))
conf_dict_lst.append(str(conf_dict))
result = list(zip(image_lst, conf_dict_lst))
return(result)
# gradio app
with gr.Blocks() as demo:
with gr.Column(variant="panel"):
with gr.Row(variant="compact"):
inputs = gr.Image()
# Use the `full_width` parameter directly
btn = gr.Button("Classify", full_width=False)
# Set the gallery layout and height directly in the constructor
gallery = gr.Gallery(label="Show images", show_label=True, elem_id="gallery", layout="grid", cell_size=8, height="auto")
demo.launch() |