File size: 6,629 Bytes
44e30d2
5440a34
44e30d2
f4453f1
 
 
 
 
 
 
 
44e30d2
 
89c1167
6fc56b6
 
 
 
 
 
 
 
 
 
f4453f1
 
 
 
 
 
5440a34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4453f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d43c5
f4453f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebbf257
f4453f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4afbe
f4453f1
5440a34
f4453f1
c3d43c5
f4453f1
 
 
 
6cf6270
 
5440a34
 
f4453f1
5440a34
f4453f1
6cf6270
5440a34
 
 
7a02a8c
 
 
5440a34
7a02a8c
 
f4453f1
6cf6270
5440a34
 
f4453f1
 
740aa0d
 
 
 
 
 
 
5440a34
 
 
3acc3fd
740aa0d
5440a34
3acc3fd
c3d43c5
9567ac8
c3d43c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import random
import numpy as np
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from PIL import Image
from groundingdino.util.inference import load_model
from groundingdino.util.inference import predict as grounding_dino_predict
import groundingdino.datasets.transforms as T
import torch
from torchvision.ops import box_convert
from torchvision.transforms.functional import to_tensor
from torchvision.transforms import GaussianBlur


# Define a custom transform for Gaussian blur
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
    if x.ndim == 4:
        for i in range(x.shape[0]):
            if random.random() < p:
                kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
                sigma = random.uniform(sigma_min, sigma_max)
                x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
    return x

# Custom Label Function
def custom_label_func(fpath):
    # this directs the labels to be 2 levels up from the image folder
    label = fpath.parents[2].name
    return label

# this function only describes how much a singular value in al ist stands out.
# if all values in the lsit are high or low this is 1
# the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
# the larger the gap between the dissimilar numbers and the simialr number the smaller this number
# only able to interpret probabilities or values between 0 and 1
# this function outputs an estimate an inverse of the classification confidence based on the probabilities of all the classes.
# the wedge threshold splits the data on a threshold with a magnitude of a positive int to force a ledge/peak in the data
def unkown_prob_calc(probs, wedge_threshold, wedge_magnitude=1, wedge='strict'):
    if wedge =='strict':
        increase_var = (1/(wedge_magnitude))
        decrease_var = (wedge_magnitude)
    if wedge =='dynamic': # this allows pointsthat are furhter from the threshold ot be moved less and points clsoer to be moved more
        increase_var = (1/(wedge_magnitude*((1-np.abs(probs-wedge_threshold)))))
        decrease_var = (wedge_magnitude*((1-np.abs(probs-wedge_threshold))))
    else:
        print("Error: use 'strict' (default) or 'dynamic' as options for the wedge parameter!")
    probs = np.where(probs>=wedge_threshold , probs**increase_var, probs)
    probs = np.where(probs<=wedge_threshold , probs**decrease_var, probs)
    diff_matrix = np.abs(probs[:, np.newaxis] - probs)
    diff_matrix_sum = np.sum(diff_matrix)
    probs_sum = np.sum(probs)
    class_val = (diff_matrix_sum/probs_sum)
    max_class_val = ((len(probs)-1)*2)
    kown_prob = class_val/max_class_val
    unknown_prob = 1-kown_prob
    return(unknown_prob)

def load_image(image_source):
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image_source = image_source.convert("RGB")
    
    image_transformed, _ = transform(image_source, None)
    return image_transformed

# load object detection model
od_model = load_model(
    model_checkpoint_path="groundingdino_swint_ogc.pth", 
    model_config_path="GroundingDINO_SwinT_OGC.cfg.py", 
    device="cpu")
print("Object detection model loaded")

def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
    TEXT_PROMPT = prompt
    BOX_TRESHOLD = 0.35
    TEXT_TRESHOLD = 0.25
    DEVICE = device  # cuda or cpu
    
    # Convert numpy array to PIL Image if needed
    if isinstance(og_image, np.ndarray):
        og_image_obj = Image.fromarray(og_image)
    else:
        og_image_obj = og_image  # Assuming og_image is already a PIL Image

    # Transform the image
    image_transformed = load_image(image_source = og_image_obj)
    
    # Your model prediction code here...
    boxes, logits, phrases = grounding_dino_predict(
        model=model,
        image=image_transformed,
        caption=TEXT_PROMPT,
        box_threshold=BOX_TRESHOLD,
        text_threshold=TEXT_TRESHOLD,
        device=DEVICE)

    # Use og_image_obj directly for further processing
    height, width = og_image_obj.size
    boxes_norm = boxes * torch.Tensor([height, width, height, width])
    xyxy = box_convert(
        boxes=boxes_norm,
        in_fmt="cxcywh",
        out_fmt="xyxy").numpy()
    img_lst = []
    for i in range(len(boxes_norm)):
        crop_img = og_image_obj.crop((xyxy[i]))
        img_lst.append(crop_img)
    return (img_lst)


# load beetle classifier model
repo_id="ChristopherMarais/beetle-model-mini"
bc_model = from_pretrained_fastai(repo_id)
# get class names
labels = np.append(np.array(bc_model.dls.vocab), "Unknown")
print("Classification model loaded")

def predict_beetle(img):
    # Split image into smaller images of detected objects
    image_lst = detect_objects(og_image=img, model=od_model, prompt="bug . insect", device="cpu")
    print("Objects detected")
    # get predictions for all segments
    conf_dict_lst = []
    output_lst = []
    img_cnt = len(image_lst)
    for i in range(0,img_cnt):
        prob_ar = np.array(bc_model.predict(image_lst[i])[2])
        print(f"Beetle classified - {i}")
        unkown_prob = unkown_prob_calc(probs=prob_ar, wedge_threshold=0.85, wedge_magnitude=5, wedge='dynamic')
        prob_ar = np.append(prob_ar, unkown_prob)
        prob_ar = np.around(prob_ar*100, decimals=1)
        # only show the top 5 predictions
        # Sorting the dictionary by value in descending order and taking the top items
        top_num = 3
        conf_dict = {labels[i]: float(prob_ar[i]) for i in range(len(prob_ar))}
        conf_dict = dict(sorted(conf_dict.items(), key=lambda item: item[1], reverse=True)[:top_num])
        conf_dict_lst.append(str(conf_dict)[1:-1]) # remove dictionary brackets
        result = list(zip(image_lst, conf_dict_lst))
        print(f"Classification processed - {i}")
    return(result)


# gradio app
css = """
button {
    width: auto;  /* Set your desired width */
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(variant="panel"):
        with gr.Row(variant="compact"):
            inputs = gr.Image()
            # Use the `full_width` parameter directly
            btn = gr.Button("Classify")

        # Set the gallery layout and height directly in the constructor
        gallery = gr.Gallery(label="Show images", show_label=True, elem_id="gallery")
    btn.click(predict_beetle, inputs, gallery)
demo.launch(height="auto")