IBBI / app.py
ChristopherMarais's picture
Update app.py
82005ae verified
raw
history blame
8.42 kB
import random
import numpy as np
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from PIL import Image
from groundingdino.util.inference import load_model
from groundingdino.util.inference import predict as grounding_dino_predict
import groundingdino.datasets.transforms as T
import torch
from torchvision.ops import box_convert
from torchvision.transforms.functional import to_tensor
from torchvision.transforms import GaussianBlur
import time
from Ambrosia import pre_process_image
# Automatically set device based on availability
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
PROMPT = "bug"
# Define a custom transform for Gaussian blur
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
if x.ndim == 4:
for i in range(x.shape[0]):
if random.random() < p:
kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
sigma = random.uniform(sigma_min, sigma_max)
x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
return x
# Custom Label Function
def custom_label_func(fpath):
# this directs the labels to be 2 levels up from the image folder
label = fpath.parents[2].name
return label
# this function only describes how much a singular value in al ist stands out.
# if all values in the lsit are high or low this is 1
# the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
# the larger the gap between the dissimilar numbers and the simialr number the smaller this number
# only able to interpret probabilities or values between 0 and 1
# this function outputs an estimate an inverse of the classification confidence based on the probabilities of all the classes.
# the wedge threshold splits the data on a threshold with a magnitude of a positive int to force a ledge/peak in the data
def unkown_prob_calc(probs, wedge_threshold, wedge_magnitude=1, wedge='strict'):
if wedge =='strict':
increase_var = (1/(wedge_magnitude))
decrease_var = (wedge_magnitude)
if wedge =='dynamic': # this allows pointsthat are furhter from the threshold ot be moved less and points clsoer to be moved more
increase_var = (1/(wedge_magnitude*((1-np.abs(probs-wedge_threshold)))))
decrease_var = (wedge_magnitude*((1-np.abs(probs-wedge_threshold))))
else:
print("Error: use 'strict' (default) or 'dynamic' as options for the wedge parameter!")
probs = np.where(probs>=wedge_threshold , probs**increase_var, probs)
probs = np.where(probs<=wedge_threshold , probs**decrease_var, probs)
diff_matrix = np.abs(probs[:, np.newaxis] - probs)
diff_matrix_sum = np.sum(diff_matrix)
probs_sum = np.sum(probs)
class_val = (diff_matrix_sum/probs_sum)
max_class_val = ((len(probs)-1)*2)
kown_prob = class_val/max_class_val
unknown_prob = 1-kown_prob
return(unknown_prob)
def load_image(image_source):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = image_source.convert("RGB")
image_transformed, _ = transform(image_source, None)
return image_transformed
# load object detection model
od_model = load_model(
model_checkpoint_path="groundingdino_swint_ogc.pth",
model_config_path="GroundingDINO_SwinT_OGC.cfg.py",
device=DEVICE)
print("Object detection model loaded")
def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
TEXT_PROMPT = prompt
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25
DEVICE = device # cuda or cpu
# Convert numpy array to PIL Image if needed
if isinstance(og_image, np.ndarray):
og_image_obj = Image.fromarray(og_image)
else:
og_image_obj = og_image # Assuming og_image is already a PIL Image
# Transform the image
image_transformed = load_image(image_source = og_image_obj)
# Your model prediction code here...
boxes, logits, phrases = grounding_dino_predict(
model=model,
image=image_transformed,
caption=TEXT_PROMPT,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD,
device=DEVICE)
# Use og_image_obj directly for further processing
height, width = og_image_obj.size
boxes_norm = boxes * torch.Tensor([height, width, height, width])
xyxy = box_convert(
boxes=boxes_norm,
in_fmt="cxcywh",
out_fmt="xyxy").numpy()
img_lst = []
for i in range(len(boxes_norm)):
crop_img = og_image_obj.crop((xyxy[i]))
img_lst.append(crop_img)
return (img_lst)
# load beetle classifier model
repo_id="ChristopherMarais/beetle-model-mini"
bc_model = from_pretrained_fastai(repo_id)
bc_model.to(DEVICE)
# get class names
labels = np.append(np.array(bc_model.dls.vocab), "Unknown")
# Replace some names used in the classifier
# Check if the element was found to prevent errors
# The target value you're looking for
target = "Scolotodes_schwarzi"
# Finding the index using np.where
indices = np.where(labels == target)
# Extracting the first occurrence, if found
if indices[0].size > 0:
idx = indices[0][0]
print(f"Index of {target}: {idx}")
else:
print(f"{target} not found in the array.")
# Replace occurence
if idx != -1:
labels[idx] = "Scolytodes_glaber"
print("Classification model loaded")
def predict_beetle(img):
print("Detecting & classifying beetles...")
start_time = time.perf_counter() # record how long it processes
# Split image into smaller images of detected objects
image_lst = detect_objects(og_image=img, model=od_model, prompt=PROMPT, device=DEVICE)
# pre_process = pre_process_image(manual_thresh_buffer=0.15, image = img) # use image_dir if directory of image used
# pre_process.segment(cluster_num=2,
# image_edge_buffer=50)
# image_lst = pre_process.col_image_lst
print("Objects detected")
end_time = time.perf_counter()
processing_time = end_time - start_time
print(f"Processing duration: {processing_time} seconds")
# get predictions for all segments
conf_dict_lst = []
output_lst = []
img_cnt = len(image_lst)
for i in range(0,img_cnt):
prob_ar = np.array(bc_model.predict(image_lst[i])[2].to(DEVICE).cpu())
unkown_prob = unkown_prob_calc(probs=prob_ar, wedge_threshold=0.85, wedge_magnitude=5, wedge='dynamic')
prob_ar = np.append(prob_ar, unkown_prob)
prob_ar = np.around(prob_ar*100, decimals=1)
# only show the top 5 predictions
# Sorting the dictionary by value in descending order and taking the top items
top_num = 3
conf_dict = {labels[i]: float(prob_ar[i]) for i in range(len(prob_ar))}
print(conf_dict)
conf_dict = dict(sorted(conf_dict.items(), key=lambda item: item[1], reverse=True)[:top_num])
conf_dict_lst.append(str(conf_dict)[1:-1]) # remove dictionary brackets
result = list(zip(image_lst, conf_dict_lst))
print(f"Beetle classified - {i}")
# record how long classification takes
end_time = time.perf_counter()
processing_time = end_time - start_time
print(f"Processing duration: {processing_time} seconds")
return(result)
# gradio app
css = """
button {
width: auto; /* Set your desired width */
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("<h1><center>Bark Beetle Classification<h1><center>")
gr.Markdown("<h3><center>Note this instance of the classifier is for demonstration only and runs on CPU, not on GPU. If you are interested in testing the model, contact us, and we will switch it to its full capacity in an instant.<h3><center>")
with gr.Column(variant="panel"):
with gr.Row(variant="compact"):
inputs = gr.Image()
# Use the `full_width` parameter directly
btn = gr.Button("Classify")
# Set the gallery layout and height directly in the constructor
gallery = gr.Gallery(label="Show images", show_label=True, elem_id="gallery", columns=8, height="auto")
btn.click(predict_beetle, inputs, gallery)
demo.launch(debug=True, show_error=True)