File size: 8,415 Bytes
44e30d2
5440a34
44e30d2
f4453f1
 
 
 
 
 
 
 
44e30d2
315a1bb
44e30d2
8ef1088
 
89c1167
315a1bb
82005ae
 
 
e0cc8ec
 
315a1bb
6fc56b6
 
 
 
 
 
 
 
 
 
f4453f1
 
 
 
 
 
5440a34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a04cfd
 
 
 
 
 
 
 
 
f4453f1
6a04cfd
 
f4453f1
6a04cfd
 
 
 
315a1bb
6a04cfd
f4453f1
6a04cfd
 
 
 
 
f4453f1
6a04cfd
 
 
 
 
f4453f1
6a04cfd
 
ebbf257
6a04cfd
 
 
 
 
 
 
 
f4453f1
6a04cfd
 
 
 
 
 
 
 
 
 
 
 
f4453f1
 
 
5b4afbe
f4453f1
315a1bb
5440a34
f4453f1
434d268
 
f239b4b
 
 
 
 
 
 
 
 
 
 
a6d0f7d
434d268
c3d43c5
f4453f1
 
56c09ce
fd6fb7f
f4453f1
e0cc8ec
6a04cfd
 
 
 
 
 
03f0f35
7912d90
 
60b91a7
03f0f35
 
 
 
 
315a1bb
03f0f35
 
 
 
 
 
 
c923ee0
03f0f35
 
 
fd6fb7f
 
 
 
 
6184be6
5440a34
f4453f1
 
740aa0d
 
 
 
 
 
 
8f247c3
6b15d19
5440a34
 
 
3acc3fd
740aa0d
5440a34
3acc3fd
6184be6
9567ac8
6184be6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import random
import numpy as np
import gradio as gr
from huggingface_hub import from_pretrained_fastai
from PIL import Image
from groundingdino.util.inference import load_model
from groundingdino.util.inference import predict as grounding_dino_predict
import groundingdino.datasets.transforms as T
import torch
from torchvision.ops import box_convert
from torchvision.transforms.functional import to_tensor
from torchvision.transforms import GaussianBlur
import time

from Ambrosia import pre_process_image



# Automatically set device based on availability
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
PROMPT = "bug"


# Define a custom transform for Gaussian blur
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
    if x.ndim == 4:
        for i in range(x.shape[0]):
            if random.random() < p:
                kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
                sigma = random.uniform(sigma_min, sigma_max)
                x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
    return x

# Custom Label Function
def custom_label_func(fpath):
    # this directs the labels to be 2 levels up from the image folder
    label = fpath.parents[2].name
    return label

# this function only describes how much a singular value in al ist stands out.
# if all values in the lsit are high or low this is 1
# the smaller the proportiopn of number of disimilar vlaues are to other more similar values the lower this number
# the larger the gap between the dissimilar numbers and the simialr number the smaller this number
# only able to interpret probabilities or values between 0 and 1
# this function outputs an estimate an inverse of the classification confidence based on the probabilities of all the classes.
# the wedge threshold splits the data on a threshold with a magnitude of a positive int to force a ledge/peak in the data
def unkown_prob_calc(probs, wedge_threshold, wedge_magnitude=1, wedge='strict'):
    if wedge =='strict':
        increase_var = (1/(wedge_magnitude))
        decrease_var = (wedge_magnitude)
    if wedge =='dynamic': # this allows pointsthat are furhter from the threshold ot be moved less and points clsoer to be moved more
        increase_var = (1/(wedge_magnitude*((1-np.abs(probs-wedge_threshold)))))
        decrease_var = (wedge_magnitude*((1-np.abs(probs-wedge_threshold))))
    else:
        print("Error: use 'strict' (default) or 'dynamic' as options for the wedge parameter!")
    probs = np.where(probs>=wedge_threshold , probs**increase_var, probs)
    probs = np.where(probs<=wedge_threshold , probs**decrease_var, probs)
    diff_matrix = np.abs(probs[:, np.newaxis] - probs)
    diff_matrix_sum = np.sum(diff_matrix)
    probs_sum = np.sum(probs)
    class_val = (diff_matrix_sum/probs_sum)
    max_class_val = ((len(probs)-1)*2)
    kown_prob = class_val/max_class_val
    unknown_prob = 1-kown_prob
    return(unknown_prob)

def load_image(image_source):
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image_source = image_source.convert("RGB")
    
    image_transformed, _ = transform(image_source, None)
    return image_transformed

# load object detection model
od_model = load_model(
    model_checkpoint_path="groundingdino_swint_ogc.pth", 
    model_config_path="GroundingDINO_SwinT_OGC.cfg.py", 
    device=DEVICE)
print("Object detection model loaded")

def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
    TEXT_PROMPT = prompt
    BOX_TRESHOLD = 0.35
    TEXT_TRESHOLD = 0.25
    DEVICE = device  # cuda or cpu
    
    # Convert numpy array to PIL Image if needed
    if isinstance(og_image, np.ndarray):
        og_image_obj = Image.fromarray(og_image)
    else:
        og_image_obj = og_image  # Assuming og_image is already a PIL Image

    # Transform the image
    image_transformed = load_image(image_source = og_image_obj)
    
    # Your model prediction code here...
    boxes, logits, phrases = grounding_dino_predict(
        model=model,
        image=image_transformed,
        caption=TEXT_PROMPT,
        box_threshold=BOX_TRESHOLD,
        text_threshold=TEXT_TRESHOLD,
        device=DEVICE)

    # Use og_image_obj directly for further processing
    height, width = og_image_obj.size
    boxes_norm = boxes * torch.Tensor([height, width, height, width])
    xyxy = box_convert(
        boxes=boxes_norm,
        in_fmt="cxcywh",
        out_fmt="xyxy").numpy()
    img_lst = []
    for i in range(len(boxes_norm)):
        crop_img = og_image_obj.crop((xyxy[i]))
        img_lst.append(crop_img)
    return (img_lst)


# load beetle classifier model
repo_id="ChristopherMarais/beetle-model-mini"
bc_model = from_pretrained_fastai(repo_id)
bc_model.to(DEVICE)
# get class names
labels = np.append(np.array(bc_model.dls.vocab), "Unknown")
# Replace some names used in the classifier
# Check if the element was found to prevent errors
# The target value you're looking for
target = "Scolotodes_schwarzi"
# Finding the index using np.where
indices = np.where(labels == target)
# Extracting the first occurrence, if found
if indices[0].size > 0:
    idx = indices[0][0]
    print(f"Index of {target}: {idx}")
else:
    print(f"{target} not found in the array.")
# Replace occurence
if idx != -1:
    labels[idx] = "Scolytodes_glaber"
print("Classification model loaded")

def predict_beetle(img):
    print("Detecting & classifying beetles...")
    start_time = time.perf_counter() # record how long it processes
    # Split image into smaller images of detected objects
    image_lst = detect_objects(og_image=img, model=od_model, prompt=PROMPT, device=DEVICE)
    
    # pre_process = pre_process_image(manual_thresh_buffer=0.15, image = img) # use image_dir if directory of image used
    # pre_process.segment(cluster_num=2, 
    #                     image_edge_buffer=50)
    # image_lst = pre_process.col_image_lst
    
    print("Objects detected")
    end_time = time.perf_counter()
    processing_time = end_time - start_time
    print(f"Processing duration: {processing_time} seconds")
    # get predictions for all segments
    conf_dict_lst = []
    output_lst = []
    img_cnt = len(image_lst)
    for i in range(0,img_cnt):
        prob_ar = np.array(bc_model.predict(image_lst[i])[2].to(DEVICE).cpu())
        unkown_prob = unkown_prob_calc(probs=prob_ar, wedge_threshold=0.85, wedge_magnitude=5, wedge='dynamic')
        prob_ar = np.append(prob_ar, unkown_prob)
        prob_ar = np.around(prob_ar*100, decimals=1)
        # only show the top 5 predictions
        # Sorting the dictionary by value in descending order and taking the top items
        top_num = 3
        conf_dict = {labels[i]: float(prob_ar[i]) for i in range(len(prob_ar))}
        print(conf_dict)
        conf_dict = dict(sorted(conf_dict.items(), key=lambda item: item[1], reverse=True)[:top_num])
        conf_dict_lst.append(str(conf_dict)[1:-1]) # remove dictionary brackets
        result = list(zip(image_lst, conf_dict_lst))
        print(f"Beetle classified - {i}")
        # record how long classification takes
        end_time = time.perf_counter()
        processing_time = end_time - start_time
        print(f"Processing duration: {processing_time} seconds")
    return(result)


# gradio app
css = """
button {
    width: auto;  /* Set your desired width */
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("<h1><center>Bark Beetle Classification<h1><center>")
    gr.Markdown("<h3><center>Note this instance of the classifier is for demonstration only and runs on CPU, not on GPU. If you are interested in testing the model, contact us, and we will switch it to its full capacity in an instant.<h3><center>")
    with gr.Column(variant="panel"):
        with gr.Row(variant="compact"):
            inputs = gr.Image()
            # Use the `full_width` parameter directly
            btn = gr.Button("Classify")

        # Set the gallery layout and height directly in the constructor
        gallery = gr.Gallery(label="Show images", show_label=True, elem_id="gallery", columns=8, height="auto")
    btn.click(predict_beetle, inputs, gallery)
demo.launch(debug=True, show_error=True)