Spaces:
Runtime error
Runtime error
import os | |
# os.system('pip install pip==23.3.0') | |
# os.system('pip uninstall spaces -y') | |
# os.system('pip install spaces==0.18.0') | |
# os.system('pip install gradio==4.0.2') | |
import gradio as gr | |
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard | |
import os | |
import spaces | |
import random | |
import torch | |
import json | |
from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation | |
from transformers import AutoFeatureExtractor, AutoModelForDepthEstimation | |
feature_extractor = AutoFeatureExtractor.from_pretrained("Intel/dpt-large") | |
modeld = AutoModelForDepthEstimation.from_pretrained("Intel/dpt-large") | |
# from depthGAN.app import create_visual_demo | |
is_shared_ui = False | |
hf_token = 'SECRET_TOKEN' | |
login(token=hf_token) | |
fs = HfFileSystem(token=hf_token) | |
api = HfApi() | |
device="cuda" if torch.cuda.is_available() else "cpu" | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
# for file naming | |
counter_file_path = "counter.txt" | |
if os.path.exists(counter_file_path): | |
with open(counter_file_path, "r") as file: | |
counter = int(file.read()) | |
else: | |
counter = 0 | |
generated_files = [] | |
def check_use_custom_or_no(value): | |
if value is True: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def get_files(file_paths): | |
last_files = {} # Dictionary to store the last file for each path | |
for file_path in file_paths: | |
# Split the file path into directory and file components | |
directory, file_name = file_path.rsplit('/', 1) | |
# Update the last file for the current path | |
last_files[directory] = file_name | |
# Extract the last files from the dictionary | |
result = list(last_files.values()) | |
return result | |
def load_model(model_name): | |
if model_name == "": | |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.") | |
raise gr.Error("You forgot to define Model ID.") | |
# Get instance_prompt a.k.a trigger word | |
card = ModelCard.load(model_name) | |
repo_data = card.data.to_dict() | |
instance_prompt = repo_data.get("instance_prompt") | |
if instance_prompt is not None: | |
print(f"Trigger word: {instance_prompt}") | |
else: | |
instance_prompt = "no trigger word needed" | |
print(f"Trigger word: no trigger word needed") | |
# List all ".safetensors" files in repo | |
sfts_available_files = fs.glob(f"{model_name}/*safetensors") | |
sfts_available_files = get_files(sfts_available_files) | |
if sfts_available_files == []: | |
sfts_available_files = ["NO SAFETENSORS FILE"] | |
print(f"Safetensors available: {sfts_available_files}") | |
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True) | |
def custom_model_changed(model_name, previous_model): | |
if model_name == "" and previous_model == "" : | |
status_message = "" | |
elif model_name != previous_model: | |
status_message = "model changed, please reload before any new run" | |
else: | |
status_message = "model ready" | |
return status_message | |
def resize_image(input_path, output_path, target_height): | |
# Open the input image | |
img = Image.open(input_path) | |
# Calculate the aspect ratio of the original image | |
original_width, original_height = img.size | |
original_aspect_ratio = original_width / original_height | |
# Calculate the new width while maintaining the aspect ratio and the target height | |
new_width = int(target_height * original_aspect_ratio) | |
# Resize the image while maintaining the aspect ratio and fixing the height | |
img = img.resize((new_width, target_height), Image.LANCZOS) | |
# Save the resized image | |
img.save(output_path) | |
return output_path | |
def predict(image, counter): | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = modeld(**inputs) | |
predicted_depth = outputs.predicted_depth | |
# interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
# visualize the prediction | |
output = prediction.squeeze().cpu().numpy() | |
formatted = (output * 255 / np.max(output)).astype("uint8") | |
depth_image = Image.fromarray(formatted) | |
depth_image.save(f"viteGradio/images/depth{counter}.png") | |
return depth_image | |
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)): | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True | |
) | |
pipe.to(device) | |
prompt = prompt | |
negative_prompt = negative_prompt | |
if seed < 0 : | |
seed = random.randint(0, 423538377342) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
if image_in == None: | |
raise gr.Error("You forgot to upload a source image.") | |
image_in = resize_image(image_in, "resized_input.jpg", 1024) | |
if preprocessor == "canny": | |
image = load_image(image_in) | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
if use_custom_model: | |
if model_name == "": | |
raise gr.Error("you forgot to set a custom model name.") | |
custom_model = model_name | |
# This is where you load your trained weights | |
if weight_name == "NO SAFETENSORS FILE": | |
pipe.load_lora_weights( | |
custom_model, | |
low_cpu_mem_usage = True, | |
use_auth_token = True | |
) | |
else: | |
pipe.load_lora_weights( | |
custom_model, | |
weight_name = weight_name, | |
low_cpu_mem_usage = True, | |
use_auth_token = True | |
) | |
lora_scale=custom_lora_weight | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guidance_scale = float(guidance_scale), | |
num_inference_steps=inf_steps, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_scale} | |
).images | |
else: | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guidance_scale = float(guidance_scale), | |
num_inference_steps=inf_steps, | |
generator=generator, | |
).images | |
global counter | |
images[0].save(f"viteGradio/images/result{counter}.png") | |
print("HELP") | |
predict(images[0], counter) | |
with open('viteGradio/images/names.json', 'r') as f: | |
filenames = json.load(f) | |
result_filename = f"result{counter}.png" | |
depth_filename = f"depth{counter}.png" | |
filenames.append(result_filename) | |
filenames.append(depth_filename) | |
with open('viteGradio/images/names.json', 'w') as f: | |
json.dump(filenames, f) | |
counter+=1 | |
with open(counter_file_path, "w") as file: | |
file.write(str(counter)) | |
# create_visual_demo(); | |
return f"viteGradio/images/result{counter-1}.png", seed | |
css=""" | |
.{ | |
height: 20%; | |
} | |
#col-container{ | |
margin: 0 auto; | |
max-width: 720px; | |
text-align: left; | |
} | |
div#warning-duplicate { | |
background-color: #ebf5ff; | |
padding: 0 10px 5px; | |
margin: 20px 0; | |
} | |
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
color: #0f4592!important; | |
} | |
div#warning-duplicate strong { | |
color: #0f4592; | |
} | |
p.actions { | |
display: flex; | |
align-items: center; | |
margin: 20px 0; | |
} | |
div#warning-duplicate .actions a { | |
display: inline-block; | |
margin-right: 10px; | |
} | |
button#load_model_btn{ | |
height: 45px !important; | |
border: none; | |
background-color: #99F6E4; !important; | |
border-radius: 10px !important; | |
padding: 10px !important; | |
cursor: pointer; | |
display: block; | |
position: relative; | |
top: -20px; | |
z-index: 100; | |
} | |
#status_info{ | |
font-size: 0.9em; | |
} | |
""" | |
theme = gr.themes.Soft( | |
primary_hue="teal", | |
secondary_hue="gray", | |
).set( | |
body_text_color_dark='*neutral_800', | |
background_fill_primary_dark='*neutral_50', | |
background_fill_secondary_dark='*neutral_50', | |
border_color_accent_dark='*primary_300', | |
border_color_primary_dark='*neutral_200', | |
color_accent_soft_dark='*neutral_50', | |
link_text_color_dark='*secondary_600', | |
link_text_color_active_dark='*secondary_600', | |
link_text_color_hover_dark='*secondary_700', | |
link_text_color_visited_dark='*secondary_500', | |
code_background_fill_dark='*neutral_100', | |
shadow_spread_dark='6px', | |
block_background_fill_dark='white', | |
block_label_background_fill_dark='*primary_100', | |
block_label_text_color_dark='*primary_500', | |
block_title_text_color_dark='*primary_500', | |
checkbox_background_color_dark='*background_fill_primary', | |
checkbox_background_color_selected_dark='*primary_600', | |
checkbox_border_color_dark='*neutral_100', | |
checkbox_border_color_focus_dark='*primary_500', | |
checkbox_border_color_hover_dark='*neutral_300', | |
checkbox_border_color_selected_dark='*primary_600', | |
checkbox_label_background_fill_selected_dark='*primary_500', | |
checkbox_label_text_color_selected_dark='white', | |
error_background_fill_dark='#fef2f2', | |
error_border_color_dark='#b91c1c', | |
error_text_color_dark='#b91c1c', | |
error_icon_color_dark='#b91c1c', | |
input_background_fill_dark='white', | |
input_background_fill_focus_dark='*secondary_500', | |
input_border_color_dark='*neutral_50', | |
input_border_color_focus_dark='*secondary_300', | |
input_placeholder_color_dark='*neutral_400', | |
slider_color_dark='*primary_500', | |
stat_background_fill_dark='*primary_300', | |
table_border_color_dark='*neutral_300', | |
table_even_background_fill_dark='white', | |
table_odd_background_fill_dark='*neutral_50', | |
button_primary_background_fill_dark='*primary_500', | |
button_primary_background_fill_hover_dark='*primary_400', | |
button_primary_border_color_dark='*primary_00', | |
button_secondary_background_fill_dark='whiite', | |
button_secondary_background_fill_hover_dark='*neutral_100', | |
button_secondary_border_color_dark='*neutral_200', | |
button_secondary_text_color_dark='*neutral_800' | |
) | |
#examples = [["examples/" + img] for img in os.listdir("examples/")] | |
im = gr.Image(visible=False) | |
with gr.Blocks(theme=theme, css=css) as demo: | |
with gr.Row(): | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<h2 style="text-align: left;">Choose a Style</h2> | |
<p style="text-align: left;">Our Pretrained Models can be found on Huggingface</p> | |
""") | |
use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", visible = False, value=False, info="To use a private model, you'll need to duplicate the space with your own access token.") | |
with gr.Blocks(visible=False) as custom_model_box: | |
with gr.Row(): | |
with gr.Column(): | |
if not is_shared_ui: | |
your_username = api.whoami()["name"] | |
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora']) | |
model_names = [item.modelId for item in my_models] | |
if not is_shared_ui: | |
custom_model = gr.Dropdown( | |
label = "Your custom model ID", | |
info="You can pick one of your private models", | |
choices = model_names, | |
allow_custom_value = True | |
#placeholder = "username/model_id" | |
) | |
else: | |
custom_model = gr.Textbox( | |
label="Your custom model ID", | |
placeholder="your_username/your_trained_model_name", | |
info="Make sure your model is set to PUBLIC" | |
) | |
weight_name = gr.Dropdown( | |
label="Safetensors file", | |
#value="pytorch_lora_weights.safetensors", | |
info="specify which one if model has several .safetensors files", | |
allow_custom_value=True, | |
visible = False | |
) | |
with gr.Column(): | |
with gr.Group(): | |
# load_model_btn = gr.Button("Load my model", elem_id="load_model_btn") | |
previous_model = gr.Textbox( | |
visible = False | |
) | |
model_status = gr.Textbox( | |
label = "model status", | |
show_label = False, | |
elem_id = "status_info" | |
) | |
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False) | |
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn") | |
image_in = gr.Image(sources="upload", type="filepath", value=( "shop1.jpg")) | |
# gr.Examples( | |
# examples=[[os.path.join(os.path.dirname(__file__), "shop2.jpg")],[os.path.join(os.path.dirname(__file__), "shop3.jpg")]], inputs=im) | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<h2 style="text-align: left;">Input a Prompt!</h2> | |
<p style="text-align: left;">Negative prompts and other settings can be found in advanced options</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
# with gr.Group(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Add your trigger word here + prompt") | |
with gr.Accordion(label="Advanced Options", open=False, visible=False): | |
# with gr.Group(): | |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured") | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=8.8) | |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25) | |
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.7) | |
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available") | |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.3) | |
seed = gr.Slider( | |
label="Seed", | |
info = "-1 denotes a random seed", | |
minimum=-1, | |
maximum=423538377342, | |
step=1, | |
value=-1 | |
) | |
last_used_seed = gr.Number( | |
label = "Last used seed", | |
info = "the seed used in the last generation", | |
) | |
submit_btn = gr.Button("Submit") | |
# label = gr.Label(label="Loader") | |
# submit_btn.click(infer, outputs=[label]) | |
result = gr.Image(label="Result", visible=True) | |
use_custom_model.change( | |
fn = check_use_custom_or_no, | |
inputs =[use_custom_model], | |
outputs = [custom_model_box], | |
queue = False | |
) | |
custom_model.blur( | |
fn=custom_model_changed, | |
inputs = [custom_model, previous_model], | |
outputs = [model_status], | |
queue = False | |
) | |
load_model_btn.click( | |
fn = load_model, | |
inputs=[custom_model], | |
outputs = [previous_model, model_status, weight_name, trigger_word], | |
queue = False | |
) | |
submit_btn.click( | |
fn = infer, | |
inputs = [use_custom_model,custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed], | |
outputs = [result, last_used_seed] | |
) | |
# return demo | |
demo.queue().launch(share=True) |