ShopGenV2 / app.py
ClaireOzzz's picture
Update app.py
98354c9
import os
# os.system('pip install pip==23.3.0')
# os.system('pip uninstall spaces -y')
# os.system('pip install spaces==0.18.0')
# os.system('pip install gradio==4.0.2')
import gradio as gr
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
import os
import spaces
import random
import torch
import json
from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation
from transformers import AutoFeatureExtractor, AutoModelForDepthEstimation
feature_extractor = AutoFeatureExtractor.from_pretrained("Intel/dpt-large")
modeld = AutoModelForDepthEstimation.from_pretrained("Intel/dpt-large")
# from depthGAN.app import create_visual_demo
is_shared_ui = False
hf_token = 'SECRET_TOKEN'
login(token=hf_token)
fs = HfFileSystem(token=hf_token)
api = HfApi()
device="cuda" if torch.cuda.is_available() else "cpu"
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
# for file naming
counter_file_path = "counter.txt"
if os.path.exists(counter_file_path):
with open(counter_file_path, "r") as file:
counter = int(file.read())
else:
counter = 0
generated_files = []
def check_use_custom_or_no(value):
if value is True:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def get_files(file_paths):
last_files = {} # Dictionary to store the last file for each path
for file_path in file_paths:
# Split the file path into directory and file components
directory, file_name = file_path.rsplit('/', 1)
# Update the last file for the current path
last_files[directory] = file_name
# Extract the last files from the dictionary
result = list(last_files.values())
return result
def load_model(model_name):
if model_name == "":
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
raise gr.Error("You forgot to define Model ID.")
# Get instance_prompt a.k.a trigger word
card = ModelCard.load(model_name)
repo_data = card.data.to_dict()
instance_prompt = repo_data.get("instance_prompt")
if instance_prompt is not None:
print(f"Trigger word: {instance_prompt}")
else:
instance_prompt = "no trigger word needed"
print(f"Trigger word: no trigger word needed")
# List all ".safetensors" files in repo
sfts_available_files = fs.glob(f"{model_name}/*safetensors")
sfts_available_files = get_files(sfts_available_files)
if sfts_available_files == []:
sfts_available_files = ["NO SAFETENSORS FILE"]
print(f"Safetensors available: {sfts_available_files}")
return model_name, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
def custom_model_changed(model_name, previous_model):
if model_name == "" and previous_model == "" :
status_message = ""
elif model_name != previous_model:
status_message = "model changed, please reload before any new run"
else:
status_message = "model ready"
return status_message
def resize_image(input_path, output_path, target_height):
# Open the input image
img = Image.open(input_path)
# Calculate the aspect ratio of the original image
original_width, original_height = img.size
original_aspect_ratio = original_width / original_height
# Calculate the new width while maintaining the aspect ratio and the target height
new_width = int(target_height * original_aspect_ratio)
# Resize the image while maintaining the aspect ratio and fixing the height
img = img.resize((new_width, target_height), Image.LANCZOS)
# Save the resized image
img.save(output_path)
return output_path
def predict(image, counter):
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = modeld(**inputs)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
# visualize the prediction
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth_image = Image.fromarray(formatted)
depth_image.save(f"viteGradio/images/depth{counter}.png")
return depth_image
@spaces.GPU
def infer(use_custom_model, model_name, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.to(device)
prompt = prompt
negative_prompt = negative_prompt
if seed < 0 :
seed = random.randint(0, 423538377342)
generator = torch.Generator(device=device).manual_seed(seed)
if image_in == None:
raise gr.Error("You forgot to upload a source image.")
image_in = resize_image(image_in, "resized_input.jpg", 1024)
if preprocessor == "canny":
image = load_image(image_in)
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
if use_custom_model:
if model_name == "":
raise gr.Error("you forgot to set a custom model name.")
custom_model = model_name
# This is where you load your trained weights
if weight_name == "NO SAFETENSORS FILE":
pipe.load_lora_weights(
custom_model,
low_cpu_mem_usage = True,
use_auth_token = True
)
else:
pipe.load_lora_weights(
custom_model,
weight_name = weight_name,
low_cpu_mem_usage = True,
use_auth_token = True
)
lora_scale=custom_lora_weight
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guidance_scale = float(guidance_scale),
num_inference_steps=inf_steps,
generator=generator,
cross_attention_kwargs={"scale": lora_scale}
).images
else:
images = pipe(
prompt,
negative_prompt=negative_prompt,
image=image,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guidance_scale = float(guidance_scale),
num_inference_steps=inf_steps,
generator=generator,
).images
global counter
images[0].save(f"viteGradio/images/result{counter}.png")
print("HELP")
predict(images[0], counter)
with open('viteGradio/images/names.json', 'r') as f:
filenames = json.load(f)
result_filename = f"result{counter}.png"
depth_filename = f"depth{counter}.png"
filenames.append(result_filename)
filenames.append(depth_filename)
with open('viteGradio/images/names.json', 'w') as f:
json.dump(filenames, f)
counter+=1
with open(counter_file_path, "w") as file:
file.write(str(counter))
# create_visual_demo();
return f"viteGradio/images/result{counter-1}.png", seed
css="""
.{
height: 20%;
}
#col-container{
margin: 0 auto;
max-width: 720px;
text-align: left;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 10px 5px;
margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
button#load_model_btn{
height: 45px !important;
border: none;
background-color: #99F6E4; !important;
border-radius: 10px !important;
padding: 10px !important;
cursor: pointer;
display: block;
position: relative;
top: -20px;
z-index: 100;
}
#status_info{
font-size: 0.9em;
}
"""
theme = gr.themes.Soft(
primary_hue="teal",
secondary_hue="gray",
).set(
body_text_color_dark='*neutral_800',
background_fill_primary_dark='*neutral_50',
background_fill_secondary_dark='*neutral_50',
border_color_accent_dark='*primary_300',
border_color_primary_dark='*neutral_200',
color_accent_soft_dark='*neutral_50',
link_text_color_dark='*secondary_600',
link_text_color_active_dark='*secondary_600',
link_text_color_hover_dark='*secondary_700',
link_text_color_visited_dark='*secondary_500',
code_background_fill_dark='*neutral_100',
shadow_spread_dark='6px',
block_background_fill_dark='white',
block_label_background_fill_dark='*primary_100',
block_label_text_color_dark='*primary_500',
block_title_text_color_dark='*primary_500',
checkbox_background_color_dark='*background_fill_primary',
checkbox_background_color_selected_dark='*primary_600',
checkbox_border_color_dark='*neutral_100',
checkbox_border_color_focus_dark='*primary_500',
checkbox_border_color_hover_dark='*neutral_300',
checkbox_border_color_selected_dark='*primary_600',
checkbox_label_background_fill_selected_dark='*primary_500',
checkbox_label_text_color_selected_dark='white',
error_background_fill_dark='#fef2f2',
error_border_color_dark='#b91c1c',
error_text_color_dark='#b91c1c',
error_icon_color_dark='#b91c1c',
input_background_fill_dark='white',
input_background_fill_focus_dark='*secondary_500',
input_border_color_dark='*neutral_50',
input_border_color_focus_dark='*secondary_300',
input_placeholder_color_dark='*neutral_400',
slider_color_dark='*primary_500',
stat_background_fill_dark='*primary_300',
table_border_color_dark='*neutral_300',
table_even_background_fill_dark='white',
table_odd_background_fill_dark='*neutral_50',
button_primary_background_fill_dark='*primary_500',
button_primary_background_fill_hover_dark='*primary_400',
button_primary_border_color_dark='*primary_00',
button_secondary_background_fill_dark='whiite',
button_secondary_background_fill_hover_dark='*neutral_100',
button_secondary_border_color_dark='*neutral_200',
button_secondary_text_color_dark='*neutral_800'
)
#examples = [["examples/" + img] for img in os.listdir("examples/")]
im = gr.Image(visible=False)
with gr.Blocks(theme=theme, css=css) as demo:
with gr.Row():
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: left;">Choose a Style</h2>
<p style="text-align: left;">Our Pretrained Models can be found on Huggingface</p>
""")
use_custom_model = gr.Checkbox(label="Use a custom pre-trained LoRa model ? (optional)", visible = False, value=False, info="To use a private model, you'll need to duplicate the space with your own access token.")
with gr.Blocks(visible=False) as custom_model_box:
with gr.Row():
with gr.Column():
if not is_shared_ui:
your_username = api.whoami()["name"]
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
model_names = [item.modelId for item in my_models]
if not is_shared_ui:
custom_model = gr.Dropdown(
label = "Your custom model ID",
info="You can pick one of your private models",
choices = model_names,
allow_custom_value = True
#placeholder = "username/model_id"
)
else:
custom_model = gr.Textbox(
label="Your custom model ID",
placeholder="your_username/your_trained_model_name",
info="Make sure your model is set to PUBLIC"
)
weight_name = gr.Dropdown(
label="Safetensors file",
#value="pytorch_lora_weights.safetensors",
info="specify which one if model has several .safetensors files",
allow_custom_value=True,
visible = False
)
with gr.Column():
with gr.Group():
# load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
previous_model = gr.Textbox(
visible = False
)
model_status = gr.Textbox(
label = "model status",
show_label = False,
elem_id = "status_info"
)
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
image_in = gr.Image(sources="upload", type="filepath", value=( "shop1.jpg"))
# gr.Examples(
# examples=[[os.path.join(os.path.dirname(__file__), "shop2.jpg")],[os.path.join(os.path.dirname(__file__), "shop3.jpg")]], inputs=im)
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: left;">Input a Prompt!</h2>
<p style="text-align: left;">Negative prompts and other settings can be found in advanced options</p>
""")
with gr.Row():
with gr.Column():
# with gr.Group():
prompt = gr.Textbox(label="Prompt", placeholder="Add your trigger word here + prompt")
with gr.Accordion(label="Advanced Options", open=False, visible=False):
# with gr.Group():
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=8.8)
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.7)
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.3)
seed = gr.Slider(
label="Seed",
info = "-1 denotes a random seed",
minimum=-1,
maximum=423538377342,
step=1,
value=-1
)
last_used_seed = gr.Number(
label = "Last used seed",
info = "the seed used in the last generation",
)
submit_btn = gr.Button("Submit")
# label = gr.Label(label="Loader")
# submit_btn.click(infer, outputs=[label])
result = gr.Image(label="Result", visible=True)
use_custom_model.change(
fn = check_use_custom_or_no,
inputs =[use_custom_model],
outputs = [custom_model_box],
queue = False
)
custom_model.blur(
fn=custom_model_changed,
inputs = [custom_model, previous_model],
outputs = [model_status],
queue = False
)
load_model_btn.click(
fn = load_model,
inputs=[custom_model],
outputs = [previous_model, model_status, weight_name, trigger_word],
queue = False
)
submit_btn.click(
fn = infer,
inputs = [use_custom_model,custom_model, weight_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
outputs = [result, last_used_seed]
)
# return demo
demo.queue().launch(share=True)