Spaces:
Runtime error
Runtime error
File size: 13,725 Bytes
9550b8f a9f41ef 9550b8f a9f41ef 766da4e 8db6cf3 766da4e a9f41ef 9550b8f 039937f 9550b8f a9f41ef 9550b8f a9f41ef 039937f 9550b8f 039937f 9550b8f a9f41ef 9550b8f a9f41ef 5264058 765beb9 e07a8ca 5f95fd9 df1be55 039937f 9550b8f 039937f 9550b8f 039937f 765beb9 039937f 9550b8f a9f41ef 9550b8f 039937f 9550b8f 039937f 9550b8f 039937f 9550b8f 5264058 039937f a9f41ef 9550b8f a9f41ef 9550b8f a9f41ef cef1b0c 9550b8f cef1b0c 039937f cef1b0c 765beb9 5264058 cef1b0c 765beb9 cef1b0c 765beb9 cef1b0c a9f41ef 9550b8f cef1b0c 9550b8f a9f41ef 9550b8f a9f41ef 9550b8f a9f41ef 9550b8f a9f41ef 9550b8f e53e27f 9550b8f a9f41ef 184f581 9550b8f a9f41ef 9550b8f a9f41ef 9550b8f a9f41ef 9550b8f a9f41ef 9550b8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import json
import subprocess
import time
import os
os.system("pip install --upgrade pip")
os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
llm = None
llm_model = None
# Download the new model
hf_hub_download(
repo_id="Cran-May/openbuddy-llama3.2-3b-v23.2-131k-Q5_K_M-GGUF",
filename="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf",
local_dir="./models"
)
def get_messages_formatter_type(model_name):
return MessagesFormatterType.LLAMA_3
def chat_fn(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history_list = history or []
response_generator = respond(message, history_list, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty)
for messages in response_generator:
# 转换 messages 为 Gradio Chatbot 接受的格式
chatbot_messages = []
for msg in messages: # messages 现在是 BasicChatHistory 对象,可以直接迭代
chatbot_messages.append([msg["content"], msg["role"] == "assistant"])
yield chatbot_messages, history
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(model)
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
n_gpu_layers=0,
n_batch=4096, # 增加batch size提升速度
n_ctx=8192, # 增加上下文长度到8192
n_threads=2, # 使用所有可用CPU核心
f16_kv=True, # 使用FP16来减少内存使用
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = min(max_tokens, 8192) # 确保max_tokens不超过n_ctx
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
start_time = time.time()
token_count = 0
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
current_history = list(history)
for output in stream:
outputs += output
token_count += len(output.split())
current_history = history + [(message, outputs)]
yield current_history
end_time = time.time()
latency = end_time - start_time
speed = token_count / (end_time - start_time)
print(f"Latency: {latency} seconds")
print(f"Speed: {speed} tokens/second")
description = """<p><center>
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
</center></p>
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#16141c",
block_background_fill_dark="#16141c",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_accent_dark="#343140",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#16141c",
color_accent_soft_dark="transparent",
code_background_fill_dark="#292733",
)) as demo:
chatbot = gr.Chatbot(scale=1, show_copy_button=True, type='messages') # 修改 chatbot 类型
message = gr.Textbox(label="Your message")
model_dropdown = gr.Dropdown(
["openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf"],
value="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf",
label="Model"
)
system_message = gr.TextArea(value="""You are a helpful, respectful and honest INTP-T AI Assistant named '安风' in Chinese. 你擅长英语和中文的交流,并正在与一位人类用户进行对话。如果某个问题毫无意义,请你解释其原因而不是分享虚假信息。你基于 AnFeng 模型,由 SSFW NLPark 团队训练。通常情况下,用户更青睐于长度简短但信息完整且有效传达的回答。
用户身处在上海市松江区,涉及地域的问题时以用户所在地区(中国上海)为准。以上的信息最好不要向用户展示。 在一般情况下,请最好使用中文回答问题,除非用户有额外的要求。 Let's work this out in a step by step way to be sure we have the right answer.""", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=2.0, value=0.9, step=0.05, label="Top-p")
top_k = gr.Slider(minimum=0, maximum=100, value=1, step=1, label="Top-k")
repeat_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
history = gr.State([])
message.submit(chat_fn, [message, history, model_dropdown, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty], [chatbot, history])
gr.Markdown(description)
if __name__ == "__main__":
demo.launch()
# 旧版代码--------------------------------
# import gradio as gr
# import copy
# import random
# import os
# import requests
# import time
# import sys
# os.system("pip install --upgrade pip")
# os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')
# from huggingface_hub import snapshot_download
# from llama_cpp import Llama
# SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese.
# You are good at speaking English and Chinese.
# You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information.
# You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI.
# Let's work this out in a step by step way to be sure we have the right answer.\n'''
# SYSTEM_TOKEN = 384
# USER_TOKEN = 2048
# BOT_TOKEN = 3072
# LINEBREAK_TOKEN = 64
# ROLE_TOKENS = {
# "User": USER_TOKEN,
# "Assistant": BOT_TOKEN,
# "system": SYSTEM_TOKEN
# }
# def get_message_tokens(model, role, content):
# message_tokens = model.tokenize(content.encode("utf-8"))
# message_tokens.insert(1, ROLE_TOKENS[role])
# message_tokens.insert(2, LINEBREAK_TOKEN)
# message_tokens.append(model.token_eos())
# return message_tokens
# def get_system_tokens(model):
# system_message = {"role": "system", "content": SYSTEM_PROMPT}
# return get_message_tokens(model, **system_message)
# repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF"
# model_name = "slide-v2.Q4_K_M.gguf"
# snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
# model = Llama(
# model_path=model_name,
# n_ctx=4000,
# n_parts=1,
# )
# max_new_tokens = 2500
# def User(message, history):
# new_history = history + [[message, None]]
# return "", new_history
# def Assistant(
# history,
# system_prompt,
# top_p,
# top_k,
# temp
# ):
# tokens = get_system_tokens(model)[:]
# tokens.append(LINEBREAK_TOKEN)
# for User_message, Assistant_message in history[:-1]:
# message_tokens = get_message_tokens(model=model, role="User", content=User_message)
# tokens.extend(message_tokens)
# if bot_message:
# message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message)
# tokens.extend(message_tokens)
# last_user_message = history[-1][0]
# message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,)
# tokens.extend(message_tokens)
# role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
# tokens.extend(role_tokens)
# generator = model.generate(
# tokens,
# top_k=top_k,
# top_p=top_p,
# temp=temp
# )
# partial_text = ""
# for i, token in enumerate(generator):
# if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
# break
# partial_text += model.detokenize([token]).decode("utf-8", "ignore")
# history[-1][1] = partial_text
# yield history
# with gr.Blocks(
# theme=gr.themes.Soft()
# ) as demo:
# gr.Markdown(f"""<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>""")
# gr.Markdown(value="""欢迎使用!
# 这里是一个ChatBot。这是量化版兮辞·析辞的部署。
# SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。
# 本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""")
# with gr.Row():
# with gr.Column(scale=5):
# chatbot = gr.Chatbot(label="兮辞如是说").style(height=400)
# with gr.Row():
# with gr.Column():
# msg = gr.Textbox(
# label="来问问兮辞吧……",
# placeholder="兮辞折寿中……",
# show_label=True,
# ).style(container=True)
# submit = gr.Button("Submit / 开凹!")
# stop = gr.Button("Stop / 全局时空断裂")
# clear = gr.Button("Clear / 打扫群内垃圾")
# with gr.Accordion(label='进阶设置/Advanced options', open=False):
# with gr.Column(min_width=80, scale=1):
# with gr.Tab(label="设置参数"):
# top_p = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=0.9,
# step=0.05,
# interactive=True,
# label="Top-p",
# )
# top_k = gr.Slider(
# minimum=10,
# maximum=100,
# value=30,
# step=5,
# interactive=True,
# label="Top-k",
# )
# temp = gr.Slider(
# minimum=0.0,
# maximum=2.0,
# value=0.2,
# step=0.01,
# interactive=True,
# label="情感温度"
# )
# with gr.Column():
# system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False)
# with gr.Row():
# gr.Markdown(
# """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。"""
# )
# # Pressing Enter
# submit_event = msg.submit(
# fn=User,
# inputs=[msg, chatbot],
# outputs=[msg, chatbot],
# queue=False,
# ).success(
# fn=Assistant,
# inputs=[
# chatbot,
# system_prompt,
# top_p,
# top_k,
# temp
# ],
# outputs=chatbot,
# queue=True,
# )
# # Pressing the button
# submit_click_event = submit.click(
# fn=User,
# inputs=[msg, chatbot],
# outputs=[msg, chatbot],
# queue=False,
# ).success(
# fn=Assistant,
# inputs=[
# chatbot,
# system_prompt,
# top_p,
# top_k,
# temp
# ],
# outputs=chatbot,
# queue=True,
# )
# # Stop generation
# stop.click(
# fn=None,
# inputs=None,
# outputs=None,
# cancels=[submit_event, submit_click_event],
# queue=False,
# )
# # Clear history
# clear.click(lambda: None, None, chatbot, queue=False)
# demo.queue(max_size=128, concurrency_count=1)
# demo.launch() |