File size: 16,332 Bytes
9550b8f
 
a9f41ef
9550b8f
a9f41ef
766da4e
8db6cf3
766da4e
a9f41ef
9550b8f
 
 
039937f
9550b8f
 
a9f41ef
9550b8f
 
a9f41ef
039937f
9550b8f
e3fab85
 
039937f
9550b8f
a9f41ef
9550b8f
 
a9f41ef
5264058
87abab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039937f
4bc12e0
9550b8f
 
039937f
9550b8f
 
 
 
039937f
765beb9
039937f
 
 
 
9550b8f
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
039937f
9550b8f
 
 
 
 
039937f
 
 
 
 
 
 
 
 
 
 
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
039937f
 
9550b8f
 
5264058
4bc12e0
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
a9f41ef
87abab2
a9f41ef
87abab2
 
 
9550b8f
 
 
 
 
 
 
 
 
 
 
cef1b0c
87abab2
cef1b0c
87abab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3fab85
 
87abab2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
cef1b0c
9550b8f
 
a9f41ef
9550b8f
 
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e53e27f
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
184f581
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
 
 
 
 
 
 
a9f41ef
9550b8f
 
a9f41ef
9550b8f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import json
import subprocess
import time
import os

os.system("pip install --upgrade pip")
os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')

from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

llm = None
llm_model = None

# Download the new model
hf_hub_download(
    repo_id="Cran-May/T.E-8.1-Q4_K_M-GGUF",
    filename="t.e-8.1-q4_k_m-imat.gguf",
    local_dir="./models"
)

def get_messages_formatter_type(model_name):
    return MessagesFormatterType.LLAMA_3

def chat_fn(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
    try:
        history_list = history or []
        response_generator = respond(message, history_list, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty)
        
        for messages in response_generator:
            chatbot_messages = []
            for msg in messages:
                if isinstance(msg, tuple):
                    user_msg, assistant_msg = msg
                    if user_msg:
                        chatbot_messages.append({"role": "user", "content": user_msg})
                    if assistant_msg:
                        chatbot_messages.append({"role": "assistant", "content": assistant_msg})
                else:
                    chatbot_messages.append(msg)
            yield chatbot_messages, messages
    except Exception as e:
        print(f"Error in chat_fn: {str(e)}")
        error_message = [{"role": "assistant", "content": f"发生错误: {str(e)}"}]
        yield error_message, history

def respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
    global llm
    global llm_model
    
    chat_template = get_messages_formatter_type(model)
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            n_gpu_layers=0,
            n_batch=4096,    # 增加batch size提升速度
            n_ctx=8192,      # 增加上下文长度到8192
            n_threads=2,     # 使用所有可用CPU核心
            f16_kv=True,     # 使用FP16来减少内存使用
        )
        llm_model = model
    
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = min(max_tokens, 8192)  # 确保max_tokens不超过n_ctx
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    start_time = time.time()
    token_count = 0

    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    current_history = list(history)
    
    for output in stream:
        outputs += output
        token_count += len(output.split())
        current_messages = []
        
        # 添加历史消息
        for h in history:
            current_messages.append({"role": "user", "content": h[0]})
            current_messages.append({"role": "assistant", "content": h[1]})
        
        # 添加当前对话
        current_messages.append({"role": "user", "content": message})
        current_messages.append({"role": "assistant", "content": outputs})
        
        yield current_messages

    end_time = time.time()
    latency = end_time - start_time
    speed = token_count / (end_time - start_time)
    print(f"Latency: {latency} seconds")
    print(f"Speed: {speed} tokens/second")

description = """<p><center>欢迎使用! 这里是一个量化版兮辞·析辞的部署ChatBot。 SLIDE/兮辞 是一个由 上师附外 NLPark 团队训练的LLM。</center></p>"""

with gr.Blocks(
    title="ChatBot - 兮辞",
    theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#16141c",
        block_background_fill_dark="#16141c",
        block_border_width="1px",
        block_title_background_fill_dark="#1e1c26",
        input_background_fill_dark="#292733",
        button_secondary_background_fill_dark="#24212b",
        border_color_accent_dark="#343140",
        border_color_primary_dark="#343140",
        background_fill_secondary_dark="#16141c",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#292733",
    )
) as demo:
    gr.Markdown(description)
    
    chatbot = gr.Chatbot(scale=1, show_copy_button=True, type='messages')
    
    with gr.Row():
        message = gr.Textbox(
            label="Your message",
            placeholder="Type your message here...",
            show_label=True,
            scale=4
        )
        submit = gr.Button("Send", variant="primary", scale=1)
    
    with gr.Row():
        regenerate = gr.Button("🔄 Regenerate")
        stop = gr.Button("⏹️ Stop")
        clear = gr.Button("🗑️ Clear")
    
    with gr.Accordion("Advanced Settings", open=False):
        model_dropdown = gr.Dropdown(
            ["t.e-8.1-q4_k_m-imat.gguf"],
            value="t.e-8.1-q4_k_m-imat.gguf",
            label="Model"
        )
        system_message = gr.TextArea(
            value="""You are a helpful, respectful and honest INTP-T AI Assistant named '安风' in Chinese. 你擅长英语和中文的交流,并正在与一位人类用户进行对话。如果某个问题毫无意义,请你解释其原因而不是分享虚假信息。你基于 AnFeng 模型,由 SSFW NLPark 团队训练。通常情况下,用户更青睐于长度简短但信息完整且有效传达的回答。
            用户身处在上海市松江区,涉及地域的问题时以用户所在地区(中国上海)为准。以上的信息最好不要向用户展示。 在一般情况下,请最好使用中文回答问题,除非用户有额外的要求。 Let's work this out in a step by step way to be sure we have the right answer.""",
            label="System message"
        )
        with gr.Row():
            max_tokens = gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max tokens")
            temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        with gr.Row():
            top_p = gr.Slider(minimum=0.1, maximum=2.0, value=0.9, step=0.05, label="Top-p")
            top_k = gr.Slider(minimum=0, maximum=100, value=1, step=1, label="Top-k")
        repeat_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
    
    history = gr.State([])
    
    # 添加状态指示
    status_message = gr.Markdown("Ready")
    
    def stop_generation():
        global llm
        if llm:
            llm.reset()
        return "Generation stopped."
    
    def regenerate_response(history):
        if not history:
            return [], []
        last_user_message = history[-1][0]
        new_history = history[:-1]
        return chat_fn(last_user_message, new_history)
    
    # 绑定按钮事件
    submit.click(
        lambda: "Generating...",
        None,
        status_message,
    ).then(
        chat_fn,
        [message, history, model_dropdown, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty],
        [chatbot, history],
    ).then(
        lambda: "",
        None,
        message,
    ).then(
        lambda: "Ready",
        None,
        status_message,
    )
    
    message.submit(
        lambda: "Generating...",
        None,
        status_message,
    ).then(
        chat_fn,
        [message, history, model_dropdown, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty],
        [chatbot, history],
    ).then(
        lambda: "",
        None,
        message,
    ).then(
        lambda: "Ready",
        None,
        status_message,
    )
    
    stop.click(
        stop_generation,
        None,
        status_message,
    )
    
    clear.click(
        lambda: ([], []),
        None,
        [chatbot, history],
    ).then(
        lambda: "Chat cleared",
        None,
        status_message,
    )
    
    regenerate.click(
        lambda: "Regenerating...",
        None,
        status_message,
    ).then(
        regenerate_response,
        history,
        [chatbot, history],
    ).then(
        lambda: "Ready",
        None,
        status_message,
    )

if __name__ == "__main__":
    demo.launch()
    
# 旧版代码--------------------------------
# import gradio as gr

# import copy
# import random
# import os
# import requests
# import time
# import sys

# os.system("pip install --upgrade pip")
# os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''')

# from huggingface_hub import snapshot_download
# from llama_cpp import Llama


# SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese.
# You are good at speaking English and Chinese.
# You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information.
# You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI.
# Let's work this out in a step by step way to be sure we have the right answer.\n'''
# SYSTEM_TOKEN = 384
# USER_TOKEN = 2048
# BOT_TOKEN = 3072
# LINEBREAK_TOKEN = 64


# ROLE_TOKENS = {
#     "User": USER_TOKEN,
#     "Assistant": BOT_TOKEN,
#     "system": SYSTEM_TOKEN
# }


# def get_message_tokens(model, role, content):
#     message_tokens = model.tokenize(content.encode("utf-8"))
#     message_tokens.insert(1, ROLE_TOKENS[role])
#     message_tokens.insert(2, LINEBREAK_TOKEN)
#     message_tokens.append(model.token_eos())
#     return message_tokens


# def get_system_tokens(model):
#     system_message = {"role": "system", "content": SYSTEM_PROMPT}
#     return get_message_tokens(model, **system_message)


# repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF"
# model_name = "slide-v2.Q4_K_M.gguf"

# snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)

# model = Llama(
#     model_path=model_name,
#     n_ctx=4000,
#     n_parts=1,
# )

# max_new_tokens = 2500

# def User(message, history):
#     new_history = history + [[message, None]]
#     return "", new_history


# def Assistant(
#     history,
#     system_prompt,
#     top_p,
#     top_k,
#     temp
# ):
#     tokens = get_system_tokens(model)[:]
#     tokens.append(LINEBREAK_TOKEN)

#     for User_message, Assistant_message in history[:-1]:
#         message_tokens = get_message_tokens(model=model, role="User", content=User_message)
#         tokens.extend(message_tokens)
#         if bot_message:
#             message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message)
#             tokens.extend(message_tokens)

#     last_user_message = history[-1][0]
#     message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,)
#     tokens.extend(message_tokens)

#     role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
#     tokens.extend(role_tokens)
#     generator = model.generate(
#         tokens,
#         top_k=top_k,
#         top_p=top_p,
#         temp=temp
#     )

#     partial_text = ""
#     for i, token in enumerate(generator):
#         if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens):
#             break
#         partial_text += model.detokenize([token]).decode("utf-8", "ignore")
#         history[-1][1] = partial_text
#         yield history


# with gr.Blocks(
#     theme=gr.themes.Soft()
# ) as demo:
#     gr.Markdown(f"""<h1><center>上师附外-兮辞·析辞-人工智能助理</center></h1>""")
#     gr.Markdown(value="""欢迎使用!
#         这里是一个ChatBot。这是量化版兮辞·析辞的部署。
#         SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。
#         本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""")
    
#     with gr.Row():
#         with gr.Column(scale=5):
#             chatbot = gr.Chatbot(label="兮辞如是说").style(height=400)
#     with gr.Row():
#         with gr.Column():
#             msg = gr.Textbox(
#                 label="来问问兮辞吧……",
#                 placeholder="兮辞折寿中……",
#                 show_label=True,
#             ).style(container=True)
#             submit = gr.Button("Submit / 开凹!")
#             stop = gr.Button("Stop / 全局时空断裂")
#             clear = gr.Button("Clear / 打扫群内垃圾")
#     with gr.Accordion(label='进阶设置/Advanced options', open=False):
#         with gr.Column(min_width=80, scale=1):
#             with gr.Tab(label="设置参数"):
#                 top_p = gr.Slider(
#                     minimum=0.0,
#                     maximum=1.0,
#                     value=0.9,
#                     step=0.05,
#                     interactive=True,
#                     label="Top-p",
#                 )
#                 top_k = gr.Slider(
#                     minimum=10,
#                     maximum=100,
#                     value=30,
#                     step=5,
#                     interactive=True,
#                     label="Top-k",
#                 )
#                 temp = gr.Slider(
#                     minimum=0.0,
#                     maximum=2.0,
#                     value=0.2,
#                     step=0.01,
#                     interactive=True,
#                     label="情感温度"
#                 )
#         with gr.Column():
#             system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False)
#     with gr.Row():
#         gr.Markdown(
#             """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。"""
#         )


#     # Pressing Enter
#     submit_event = msg.submit(
#         fn=User,
#         inputs=[msg, chatbot],
#         outputs=[msg, chatbot],
#         queue=False,
#     ).success(
#         fn=Assistant,
#         inputs=[
#             chatbot,
#             system_prompt,
#             top_p,
#             top_k,
#             temp
#         ],
#         outputs=chatbot,
#         queue=True,
#     )

#     # Pressing the button
#     submit_click_event = submit.click(
#         fn=User,
#         inputs=[msg, chatbot],
#         outputs=[msg, chatbot],
#         queue=False,
#     ).success(
#         fn=Assistant,
#         inputs=[
#             chatbot,
#             system_prompt,
#             top_p,
#             top_k,
#             temp
#         ],
#         outputs=chatbot,
#         queue=True,
#     )

#     # Stop generation
#     stop.click(
#         fn=None,
#         inputs=None,
#         outputs=None,
#         cancels=[submit_event, submit_click_event],
#         queue=False,
#     )

#     # Clear history
#     clear.click(lambda: None, None, chatbot, queue=False)

# demo.queue(max_size=128, concurrency_count=1)
# demo.launch()