Csplk's picture
Update app.py
471f9af verified
raw
history blame
3.4 kB
import spaces
import torch
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
if torch.cuda.is_available():
device, dtype = "cuda", torch.float16
else:
device, dtype = "cpu", torch.float32
model_id = "vikhyatk/moondream2"
revision = "2024-04-02"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
moondream = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype
).to(device=device)
moondream.eval()
@spaces.GPU
def answer_questions(image_tuples, prompt_text):
result = ""
prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts
print(f"prompts\n{prompts}\n")
image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None
# Check if the lengths of image_embeds and prompts are equal
#if len(image_embeds) != len(prompts):
#return ("Error: The number of images input and prompts input (seperate by commas in input text field) must be the same.")
answers = []
for prompt in prompts:
image_answers = moondream.batch_answer(
images=[img.convert("RGB") for img in image_embeds],
prompts=[prompt] * len(image_embeds),
tokenizer=tokenizer,
)
answers.append(image_answers)
data = []
for i in range(len(image_tuples)):
image_name = f"image{i+1}"
image_answers = [answer[i] for answer in answers]
print(f"image{i+1}_answers \n {image_answers} \n")
data.append([image_name] + image_answers)
for question, answer in zip(prompts, answers):
Q_and_A += (f"Q: {question}\nA: {answer}\n\n")
print(f"\n\n{Q_and_A}\n\n")
result = {'headers': prompts, 'data': data}
return result
'''
answers = moondream.batch_answer(
images=image_embeds,
prompts=prompts,
tokenizer=tokenizer,
)
for question, answer in zip(prompts, answers):
result += (f"Q: {question}\nA: {answer}\n\n")
return result
'''
with gr.Blocks() as demo:
gr.Markdown("# moondream2 unofficial batch processing demo")
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each promp on each image**")
gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*")
gr.Markdown("## πŸŒ” moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
with gr.Row():
img = gr.Gallery(label="Upload Images", type="pil")
with gr.Row():
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8)
with gr.Row():
submit = gr.Button("Submit")
output = gr.TextArea(label="Questions and Answers", lines=30)
output2 = gr.Dataframe(label="Structured Dataframe", type="array",wrap=True)
submit.click(answer_questions, [img, prompt], output, output2)
demo.queue().launch()