File size: 34,280 Bytes
1e744c4
 
 
 
 
 
 
40311b7
e8762f9
1e744c4
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c7a01
85d6c89
1e744c4
 
 
 
61d82fd
1e744c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e80889
1e744c4
 
 
 
 
 
85d6c89
1e744c4
85d6c89
 
 
 
 
 
1e744c4
 
 
d0c7a01
1e744c4
 
d0c7a01
85d6c89
1e744c4
 
 
 
 
40311b7
85d6c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40311b7
d0c7a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40311b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d9f32
 
 
 
 
 
 
 
 
 
 
 
 
8e80889
 
 
 
 
 
40311b7
 
 
85d6c89
 
 
 
 
 
 
 
 
 
 
 
 
 
b01e56c
85d6c89
 
 
 
 
 
 
 
 
 
 
40311b7
85d6c89
 
 
 
 
61d82fd
 
 
85d6c89
40311b7
85d6c89
40311b7
 
85d6c89
 
 
 
 
 
 
 
61d82fd
 
40311b7
 
85d6c89
 
 
 
40311b7
 
85d6c89
 
 
 
 
8e80889
85d6c89
d0c7a01
85d6c89
 
 
 
 
 
 
 
 
 
 
 
d0c7a01
 
85d6c89
 
 
 
b01e56c
 
 
 
 
 
 
 
40311b7
85d6c89
 
 
 
40311b7
85d6c89
40311b7
85d6c89
b01e56c
85d6c89
40311b7
 
8e80889
 
1e744c4
 
 
 
 
40311b7
8e80889
 
 
40311b7
 
 
8e80889
 
 
 
 
 
67af9e2
b01e56c
8e80889
 
 
 
d0c7a01
 
40311b7
 
 
 
 
1e744c4
 
8e80889
1e744c4
 
 
 
40311b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e744c4
 
 
 
40311b7
 
 
 
 
 
 
 
 
 
61d82fd
 
 
 
 
 
4e2f72e
 
 
 
 
1e744c4
 
 
e8762f9
8e80889
 
 
 
d0c7a01
 
 
 
 
 
e8762f9
b01e56c
 
db65615
b01e56c
db65615
 
b01e56c
1e744c4
 
 
7f18dc4
 
0d5acc7
7f18dc4
0d5acc7
7f18dc4
0d5acc7
7f18dc4
0d5acc7
7f18dc4
1e744c4
40311b7
1e744c4
 
 
 
 
40311b7
 
 
4e2f72e
b01e56c
96b845f
61d82fd
1e744c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8762f9
d0c7a01
 
e8762f9
8e80889
b01e56c
 
 
1e744c4
 
 
 
 
 
 
40311b7
 
 
1e744c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import os
import warnings
import huggingface_hub
import requests
import torch
import ctranslate2
import transformers
import traceback

from typing import Optional
from src.config import ModelConfig
from src.translation.translationLangs import TranslationLang, get_lang_from_whisper_code

class TranslationModel:
    def __init__(
        self,
        modelConfig: ModelConfig,
        device: str = None,
        whisperLang: TranslationLang = None,
        translationLang: TranslationLang = None,
        batchSize: int = 2,
        noRepeatNgramSize: int = 3,
        numBeams: int = 2,
        torchDtypeFloat16: bool = True,
        usingBitsandbytes: str = None,
        downloadRoot: Optional[str] = None,
        localFilesOnly: bool = False,
        loadModel: bool = False,
    ):
        """Initializes the M2M100 / Nllb-200 / mt5 / ALMA / madlad400 / seamless-m4t / Llama translation model.

        Args:
          modelConfig: Config of the model to use (distilled-600M, distilled-1.3B, 
            1.3B, 3.3B...) or a path to a converted
            model directory. When a size is configured, the converted model is downloaded
            from the Hugging Face Hub.
          device: Device to use for computation (cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, 
            ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia).
          device_index: Device ID to use.
            The model can also be loaded on multiple GPUs by passing a list of IDs
            (e.g. [0, 1, 2, 3]). In that case, multiple transcriptions can run in parallel
            when transcribe() is called from multiple Python threads (see also num_workers).
          compute_type: Type to use for computation.
            See https://opennmt.net/CTranslate2/quantization.html.
          cpu_threads: Number of threads to use when running on CPU (4 by default).
            A non zero value overrides the OMP_NUM_THREADS environment variable.
          num_workers: When transcribe() is called from multiple Python threads,
            having multiple workers enables true parallelism when running the model
            (concurrent calls to self.model.generate() will run in parallel).
            This can improve the global throughput at the cost of increased memory usage.
          downloadRoot: Directory where the models should be saved. If not set, the models
            are saved in the standard Hugging Face cache directory.
          localFilesOnly:  If True, avoid downloading the file and return the path to the
            local cached file if it exists.
        """
        self.modelConfig = modelConfig
        self.whisperLang = whisperLang # self.translationLangWhisper = get_lang_from_whisper_code(whisperLang.code.lower() if whisperLang is not None else "en")
        self.translationLang = translationLang

        if translationLang is None:
            return
        
        self.batchSize = batchSize
        self.noRepeatNgramSize = noRepeatNgramSize
        self.numBeams = numBeams

        if os.path.isdir(modelConfig.url):
            self.modelPath = modelConfig.url
        else:
            self.modelPath = modelConfig.url if getattr(modelConfig, "model_file", None) is not None else download_model(
                modelConfig,
                localFilesOnly=localFilesOnly,
                cacheDir=downloadRoot,
            )

        if device is None:
            self.totalVram = 0
            if torch.cuda.is_available():
                try:
                    deviceId = torch.cuda.current_device()
                    self.totalVram = torch.cuda.get_device_properties(deviceId).total_memory/(1024*1024*1024)
                except Exception as e:
                    print(traceback.format_exc())
                    print("Error detect vram: " + str(e))
                device = "cuda" if "ct2" in self.modelPath else "cuda:0"
            else:
                device = "cpu"
                torchDtypeFloat16 = False

        self.device = device
        self.torchDtypeFloat16 = torchDtypeFloat16
        self.usingBitsandbytes = usingBitsandbytes

        if loadModel:
            self.load_model()

    def load_model(self):
        """
        [transformers.BitsAndBytesConfig]
        load_in_8bit (bool, optional, defaults to False)
            This flag is used to enable 8-bit quantization with LLM.int8().
        load_in_4bit (bool, optional, defaults to False)
            This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from bitsandbytes.
        llm_int8_enable_fp32_cpu_offload (bool, optional, defaults to False)
            This flag is used for advanced use cases and users that are aware of this feature. 
            If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. 
            This is useful for offloading large models such as google/flan-t5-xxl. Note that the int8 operations will not be run on CPU.
        bnb_4bit_compute_dtype (torch.dtype or str, optional, defaults to torch.float32)
            This sets the computational type which might be different than the input time. 
            For example, inputs might be fp32, but computation can be set to bf16 for speedups.
        bnb_4bit_quant_type (str, optional, defaults to "fp4")
            This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by fp4 or nf4.
        bnb_4bit_use_double_quant (bool, optional, defaults to False)
            This flag is used for nested quantization where the quantization constants from the first quantization are quantized again.
        
        [from_pretrained]
        low_cpu_mem_usage(bool, optional):
            Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. This is an experimental feature and a subject to change at any moment.
        
        torch_dtype (str or torch.dtype, optional):
            Override the default torch.dtype and load the model under a specific dtype. The different options are:
            1. torch.float16 or torch.bfloat16 or torch.float: load in a specified dtype, ignoring the model’s config.torch_dtype if one exists. 
               If not specified the model will get loaded in torch.float (fp32).
            2. "auto" - A torch_dtype entry in the config.json file of the model will be attempted to be used. 
               If this entry isn’t found then next check the dtype of the first weight in the checkpoint that’s of a floating point type and use that as dtype. 
               This will load the model using the dtype it was saved in at the end of the training. It can’t be used as an indicator of how the model was trained. 
               Since it could be trained in one of half precision dtypes, but saved in fp32.
            For some models the dtype they were trained in is unknown - you may try to check the model’s paper or reach out to the authors and 
            ask them to add this information to the model’s card and to insert the torch_dtype entry in config.json on the hub.
            
        device_map (str or Dict[str, Union[int, str, torch.device]] or int or torch.device, optional):
            A map that specifies where each submodule should go. It doesn’t need to be refined to each parameter/buffer name, 
            once a given module name is inside, every submodule of it will be sent to the same device. 
            If we only pass the device (e.g., "cpu", "cuda:1", "mps", or a GPU ordinal rank like 1) on which the model will be allocated, 
            the device map will map the entire model to this device. Passing device_map = 0 means put the whole model on GPU 0.
            To have Accelerate compute the most optimized device_map automatically, set device_map="auto". For more information about each option see designing a device map.
        
        load_in_8bit (bool, optional, defaults to False)
            If True, will convert the loaded model into mixed-8bit quantized model. To use this feature please install bitsandbytes (pip install -U bitsandbytes).
        load_in_4bit (bool, optional, defaults to False)
            If True, will convert the loaded model into 4bit precision quantized model. To use this feature install the latest version of bitsandbytes (pip install -U bitsandbytes).
        
        [transformers.AutoTokenizer.from_pretrained]
        use_fast (bool, optional, defaults to True):
            Use a fast Rust-based tokenizer if it is supported for a given model. 
            If a fast tokenizer is not available for a given model, a normal Python-based tokenizer is returned instead.
        
        [transformers.AutoModelForCausalLM.from_pretrained]
        device_map (str or Dict[str, Union[int, str, torch.device], optional):
            Sent directly as model_kwargs (just a simpler shortcut). When accelerate library is present, 
            set device_map="auto" to compute the most optimized device_map automatically.
        revision (str, optional, defaults to "main"):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, 
            since we use a git-based system for storing models and other artifacts on huggingface.co, 
            so revision can be any identifier allowed by git.
        code_revision (str, optional, defaults to "main")
            The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. 
            It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, 
            so revision can be any identifier allowed by git.
        trust_remote_code (bool, optional, defaults to False):
            Whether or not to allow for custom models defined on the Hub in their own modeling files. 
            This option should only be set to True for repositories you trust and in which you have read the code, 
            as it will execute code present on the Hub on your local machine.
        
        [transformers.pipeline "text-generation"]
        do_sample:
            if set to True, this parameter enables decoding strategies such as multinomial sampling, 
            beam-search multinomial sampling, Top-K sampling and Top-p sampling. 
            All these strategies select the next token from the probability distribution 
            over the entire vocabulary with various strategy-specific adjustments.
        temperature (float, optional, defaults to 1.0):
            The value used to modulate the next token probabilities.
        top_k (int, optional, defaults to 50):
            The number of highest probability vocabulary tokens to keep for top-k-filtering.
        top_p (float, optional, defaults to 1.0):
            If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
        repetition_penalty (float, optional, defaults to 1.0)
            The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
            
        [transformers.GPTQConfig]
        use_exllama (bool, optional):
            Whether to use exllama backend. Defaults to True if unset. Only works with bits = 4.
        
        [ExLlama]
            ExLlama is a Python/C++/CUDA implementation of the Llama model that is designed for faster inference with 4-bit GPTQ weights (check out these benchmarks). 
            The ExLlama kernel is activated by default when you create a [GPTQConfig] object. 
            To boost inference speed even further, use the ExLlamaV2 kernels by configuring the exllama_config parameter.
            The ExLlama kernels are only supported when the entire model is on the GPU. 
            If you're doing inference on a CPU with AutoGPTQ (version > 0.4.2), then you'll need to disable the ExLlama kernel. 
            This overwrites the attributes related to the ExLlama kernels in the quantization config of the config.json file.
            https://github.com/huggingface/transformers/blob/main/docs/source/en/quantization.md#exllama
            
        [ctransformers]
        gpu_layers
            means number of layers to run on GPU. Depending on how much GPU memory is available you can increase gpu_layers. Start with a larger value gpu_layers=100 and if it runs out of memory, try smaller values.
            To run some of the model layers on GPU, set the `gpu_layers` parameter
            https://github.com/marella/ctransformers/issues/68
        """
        try:
            print('\n\nLoading model: %s\n\n' % self.modelPath)
            kwargsTokenizer = {}
            kwargsModel = {}
            kwargsPipeline = {}

            if not any(name in self.modelPath for name in ["ct2", "GGUF", "GPTQ"]):
                kwargsModel["torch_dtype"] = torch.float16 if self.torchDtypeFloat16 else "auto"

            if "GPTQ" in self.modelPath:
                kwargsModel.update({"device_map": "auto"})
            elif "ct2" in self.modelPath:
                kwargsModel.update({"device": self.device})
            elif "GGUF" in self.modelPath:
                pass
            elif self.usingBitsandbytes == None:
                kwargsPipeline.update({"device": self.device})
            elif self.usingBitsandbytes == "int8":
                kwargsModel.update({"load_in_8bit": True, "llm_int8_enable_fp32_cpu_offload": True})
            elif self.usingBitsandbytes == "int4":
                kwargsModel.update({"load_in_4bit": True, "llm_int8_enable_fp32_cpu_offload": True, 
                                    "bnb_4bit_use_double_quant": True, 
                                    "bnb_4bit_quant_type": "nf4", 
                                    "bnb_4bit_compute_dtype": torch.bfloat16})

            if not any(name in self.modelPath for name in ["ct2", "GGUF"]):    
                kwargsModel.update({"pretrained_model_name_or_path": self.modelPath, "low_cpu_mem_usage": True})            

            if "ct2" in self.modelPath:
                kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelConfig.tokenizer_url if self.modelConfig.tokenizer_url is not None and len(self.modelConfig.tokenizer_url) > 0 else self.modelPath})
                kwargsModel.update({"model_path": self.modelPath, "compute_type": "auto"})
                if "ALMA" in self.modelPath:
                    self.ALMAPrefix = "Translate this from " + self.whisperLang.whisper.names[0] + " to " + self.translationLang.whisper.names[0] + ":\n" + self.whisperLang.whisper.names[0] + ": "
                    self.transModel = ctranslate2.Generator(**kwargsModel)
                elif "Llama" in self.modelPath:
                    self.roleSystem = {"role": "system", "content":"You are an excellent and professional translation master who understands languages from all around the world. Please directly translate the following sentence from " + self.whisperLang.whisper.names[0] + " to " + self.translationLang.whisper.names[0] + ", please simply provide the translation below without further explanation and without using any emojis."}
                    self.transModel = ctranslate2.Generator(**kwargsModel)
                else:
                    if "nllb" in self.modelPath:
                        kwargsTokenizer.update({"src_lang": self.whisperLang.nllb.code})
                        self.targetPrefix = [self.translationLang.nllb.code]
                    elif "m2m100" in self.modelPath:
                        kwargsTokenizer.update({"src_lang": self.whisperLang.m2m100.code})
                    elif "madlad400" in self.modelPath:
                        kwargsTokenizer.update({"src_lang": self.whisperLang.m2m100.code})
                        self.madlad400Prefix = "<2" + self.translationLang.whisper.code + "> "
                    self.transModel = ctranslate2.Translator(**kwargsModel)
                self.transTokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
                if "m2m100" in self.modelPath:
                    self.targetPrefix = [self.transTokenizer.lang_code_to_token[self.translationLang.m2m100.code]]
                elif "Llama" in self.modelPath:
                    self.terminators = [self.transTokenizer.eos_token_id, self.transTokenizer.convert_tokens_to_ids("<|eot_id|>")]
            elif "mt5" in self.modelPath:
                self.mt5Prefix = self.whisperLang.whisper.code + "2" + self.translationLang.whisper.code + ": "
                kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelPath, "legacy": False})
                self.transTokenizer = transformers.T5Tokenizer.from_pretrained(**kwargsTokenizer)
                self.transModel = transformers.MT5ForConditionalGeneration.from_pretrained(**kwargsModel)
                kwargsPipeline.update({"task": "text2text-generation", "model": self.transModel, "tokenizer": self.transTokenizer})
            elif "ALMA" in self.modelPath:
                self.ALMAPrefix = "Translate this from " + self.whisperLang.whisper.names[0] + " to " + self.translationLang.whisper.names[0] + ":\n" + self.whisperLang.whisper.names[0] + ": "
                if "GGUF" in self.modelPath:
                    kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelConfig.tokenizer_url})
                    kwargsModel.update({"model_path_or_repo_id": self.modelPath, "hf": True, "model_file": self.modelConfig.model_file, "model_type": "llama"})
                    if self.totalVram > 2:
                        kwargsModel.update({"gpu_layers":int(self.totalVram*7)})
                    import ctransformers
                    self.transModel = ctransformers.AutoModelForCausalLM.from_pretrained(**kwargsModel)
                else:
                    kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelPath, "use_fast": True})
                    if "GPTQ" in self.modelPath:
                        kwargsModel.update({"trust_remote_code": False, "revision": self.modelConfig.revision})
                        if self.device == "cpu":
                            # Due to the poor support of GPTQ for CPUs, Therefore, it is strongly discouraged to operate it on CPU.  
                            # set torch_dtype=torch.float32 to prevent the occurrence of the exception "addmm_impl_cpu_ not implemented for 'Half'."
                            transModelConfig = transformers.AutoConfig.from_pretrained(self.modelPath)
                            transModelConfig.quantization_config["use_exllama"] = False
                            kwargsModel.update({"config": transModelConfig})
                    self.transModel = transformers.AutoModelForCausalLM.from_pretrained(**kwargsModel)
                self.transTokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
                kwargsPipeline.update({"task": "text-generation", "model": self.transModel, "tokenizer": self.transTokenizer, "do_sample": True, "temperature": 0.7, "top_k": 40, "top_p": 0.95, "repetition_penalty": 1.1})
            elif "madlad400" in self.modelPath:
                self.madlad400Prefix = "<2" + self.translationLang.whisper.code + "> "
                kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelPath, "legacy": False})
                self.transTokenizer = transformers.T5Tokenizer.from_pretrained(**kwargsTokenizer)
                self.transModel = transformers.T5ForConditionalGeneration.from_pretrained(**kwargsModel)
                kwargsPipeline.update({"task": "text2text-generation", "model": self.transModel, "tokenizer": self.transTokenizer})
            elif "seamless" in self.modelPath:
                self.transProcessor = transformers.AutoProcessor.from_pretrained(self.modelPath)
                if "v2" in self.modelPath:
                    self.transModel = transformers.SeamlessM4Tv2Model.from_pretrained(**kwargsModel)
                else:
                    self.transModel = transformers.SeamlessM4TModel.from_pretrained(**kwargsModel)
                if self.device != "cpu" and "load_in_8bit" not in kwargsModel and "load_in_4bit" not in kwargsModel:
                    self.transModel.to(self.device)
            else:
                kwargsTokenizer.update({"pretrained_model_name_or_path": self.modelPath})
                self.transTokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
                self.transModel = transformers.AutoModelForSeq2SeqLM.from_pretrained(**kwargsModel)
                kwargsPipeline.update({"task": "translation", "model": self.transModel, "tokenizer": self.transTokenizer})
                if "m2m100" in self.modelPath:
                    kwargsPipeline.update({"src_lang": self.whisperLang.m2m100.code, "tgt_lang": self.translationLang.m2m100.code})
                else: #NLLB
                    kwargsPipeline.update({"src_lang": self.whisperLang.nllb.code, "tgt_lang": self.translationLang.nllb.code})
            if not any(name in self.modelPath for name in ["ct2", "seamless"]):
                self.transTranslator = transformers.pipeline(**kwargsPipeline)
        except Exception as e:
            self.release_vram()
            raise e
            

    def release_vram(self):
        try:
            if torch.cuda.is_available():
                if "ct2" not in self.modelPath:
                    try:
                        if getattr(self, "transModel", None) is not None:
                            device = torch.device("cpu")
                            self.transModel.to(device)
                    except Exception as e:
                        print(traceback.format_exc())
                        print("\tself.transModel.to cpu, error: " + str(e))
                    if getattr(self, "transTranslator", None) is not None:
                        del self.transTranslator
                if "ct2" in self.modelPath:
                    if getattr(self, "transModel", None) is not None and getattr(self.transModel, "unload_model", None) is not None:
                        self.transModel.unload_model()
                    
                if getattr(self, "transProcessor", None) is not None:
                    del self.transProcessor
                if getattr(self, "transTokenizer", None) is not None:
                    del self.transTokenizer
                if getattr(self, "transModel", None) is not None:
                    del self.transModel
                import gc
                gc.collect()
                try:
                    torch.cuda.empty_cache()
                except Exception as e:
                    print(traceback.format_exc())
                    print("\tcuda empty cache, error: " + str(e))
                print("release vram end.")
        except Exception as e:
            print(traceback.format_exc())
            print("Error release vram: " + str(e))


    def translation(self, text: str, max_length: int = 400):
        """
        [ctranslate2]
        max_batch_size:
            The maximum batch size. If the number of inputs is greater than max_batch_size, 
            the inputs are sorted by length and split by chunks of max_batch_size examples 
            so that the number of padding positions is minimized.
        no_repeat_ngram_size:
            Prevent repetitions of ngrams with this size (set 0 to disable).
        beam_size:
            Beam size (1 for greedy search).
        
        [ctranslate2.Generator.generate_batch]
        sampling_temperature:
            Sampling temperature to generate more random samples.
        sampling_topk:
            Randomly sample predictions from the top K candidates.
        sampling_topp:
            Keep the most probable tokens whose cumulative probability exceeds this value.
        repetition_penalty:
            Penalty applied to the score of previously generated tokens (set > 1 to penalize).
        include_prompt_in_result:
            Include the start_tokens in the result.
            If include_prompt_in_result is True (the default), the decoding loop is constrained to generate the start tokens that are then included in the result.
            If include_prompt_in_result is False, the start tokens are forwarded in the decoder at once to initialize its state (i.e. the KV cache for Transformer models).
            For variable-length inputs, only the tokens up to the minimum length in the batch are forwarded at once. The remaining tokens are generated in the decoding loop with constrained decoding.

        [transformers.TextGenerationPipeline.__call__]
        return_full_text (bool, optional, defaults to True):
            If set to False only added text is returned, otherwise the full text is returned. Only meaningful if return_text is set to True.
        """
        output = None
        result = None
        try:
            if "ct2" in self.modelPath:
                if any(name in self.modelPath for name in ["nllb", "m2m100"]):
                    source = self.transTokenizer.convert_ids_to_tokens(self.transTokenizer.encode(text))
                    output = self.transModel.translate_batch([source], target_prefix=[self.targetPrefix], max_batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, beam_size=self.numBeams)
                    target = output[0].hypotheses[0][1:]
                    result = self.transTokenizer.decode(self.transTokenizer.convert_tokens_to_ids(target))
                elif "ALMA" in self.modelPath:
                    source = self.transTokenizer.convert_ids_to_tokens(self.transTokenizer.encode(self.ALMAPrefix + text + "\n" + self.translationLang.whisper.names[0] + ": "))
                    output = self.transModel.generate_batch([source], max_length=max_length, max_batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, beam_size=self.numBeams, sampling_temperature=0.7, sampling_topp=0.9, repetition_penalty=1.1, include_prompt_in_result=False) #, sampling_topk=40
                    target = output[0]
                    result = self.transTokenizer.decode(target.sequences_ids[0])
                elif "Llama" in self.modelPath:
                    input_ids = self.transTokenizer.apply_chat_template([self.roleSystem, {"role": "user", "content": "'" + text + "', \n" + self.translationLang.whisper.names[0] + ":"}], tokenize=False, add_generation_prompt=True)
                    source = self.transTokenizer.convert_ids_to_tokens(self.transTokenizer.encode(input_ids))
                    output = self.transModel.generate_batch([source], max_length=max_length, max_batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, beam_size=self.numBeams, sampling_temperature=0.7, sampling_topp=0.9, include_prompt_in_result=False, end_token=self.terminators)
                    target = output[0]
                    result = self.transTokenizer.decode(target.sequences_ids[0])
                elif "madlad400" in self.modelPath:
                    source = self.transTokenizer.convert_ids_to_tokens(self.transTokenizer.encode(self.madlad400Prefix + text))
                    output = self.transModel.translate_batch([source], max_batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, beam_size=self.numBeams)
                    target = output[0].hypotheses[0]
                    result = self.transTokenizer.decode(self.transTokenizer.convert_tokens_to_ids(target))
            elif "mt5" in self.modelPath:
                output = self.transTranslator(self.mt5Prefix + text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams) #, num_return_sequences=2
                result = output[0]['generated_text']
            elif "ALMA" in self.modelPath:
                if "GPTQ" in self.modelPath:
                    output = self.transTranslator(self.ALMAPrefix + text + "\n" + self.translationLang.whisper.names[0] + ": ", max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams, return_full_text=False)
                elif "GGUF" in self.modelPath:
                    output = self.transTranslator(self.ALMAPrefix + text + "\n" + self.translationLang.whisper.names[0] + ": ", max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams, return_full_text=False)
                else:
                    output = self.transTranslator(self.ALMAPrefix + text + "\n" + self.translationLang.whisper.names[0] + ": ", max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams, return_full_text=False)
                    
                result = output[0]['generated_text']
            elif "madlad400" in self.modelPath:
                output = self.transTranslator(self.madlad400Prefix + text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams) #, num_return_sequences=2
                result = output[0]['generated_text']
            elif "seamless" in self.modelPath:
                if self.device != "cpu":
                    text_inputs = self.transProcessor(text = text, src_lang=self.whisperLang.seamlessT_Tx.code, return_tensors="pt").to(self.device)
                else:
                    text_inputs = self.transProcessor(text = text, src_lang=self.whisperLang.seamlessT_Tx.code, return_tensors="pt")
                output_tokens = self.transModel.generate(**text_inputs, tgt_lang=self.translationLang.seamlessT_Tx.code, generate_speech=False, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
                result = self.transProcessor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
            else: #M2M100 & NLLB
                output = self.transTranslator(text, max_length=max_length, batch_size=self.batchSize, no_repeat_ngram_size=self.noRepeatNgramSize, num_beams=self.numBeams)
                result = output[0]['translation_text']

            if len(result) > 2:
                if result[0] == "\"" and result[len(result) - 1] == "\"":
                    result = result[1:-1]
                elif result[0] == "'" and result[len(result) - 1] == "'":
                    result = result[1:-1]
                elif result[0] == "「" and result[len(result) - 1] == "」":
                    result = result[1:-1]
                elif result[0] == "『" and result[len(result) - 1] == "』":
                    result = result[1:-1]
        except Exception as e:
            print(traceback.format_exc())
            print("Error translation text: " + str(e))

        return result


_MODELS = ["nllb-200", 
           "m2m100",
           "mt5",
           "ALMA",
           "madlad400",
           "seamless",
           "Llama"]

def check_model_name(name):
    return any(allowed_name in name for allowed_name in _MODELS)

def download_model(
    modelConfig: ModelConfig,
    outputDir: Optional[str] = None,
    localFilesOnly: bool = False,
    cacheDir: Optional[str] = None,
):
    """"download_model" is referenced from the "utils.py" script 
      of the "faster_whisper" project, authored by guillaumekln.
    
    Downloads a nllb-200 model from the Hugging Face Hub.

    The model is downloaded from https://huggingface.co/facebook.

    Args:
      modelConfig: config of the model to download (facebook/nllb-distilled-600M, 
        facebook/nllb-distilled-1.3B, facebook/nllb-1.3B, facebook/nllb-3.3B...).
      outputDir: Directory where the model should be saved. If not set, the model is saved in
        the cache directory.
      localFilesOnly:  If True, avoid downloading the file and return the path to the local
        cached file if it exists.
      cacheDir: Path to the folder where cached files are stored.

    Returns:
      The path to the downloaded model.

    Raises:
      ValueError: if the model size is invalid.
    """
    if not check_model_name(modelConfig.name):
        raise ValueError(
            "Invalid model name '%s', expected one of: %s" % (modelConfig.name, ", ".join(_MODELS))
        )

    repoId = modelConfig.url #"facebook/nllb-200-%s" % 

    allowPatterns = [
        "config.json",
        "generation_config.json",
        "model.bin",
        "pytorch_model.bin",
        "pytorch_model.bin.index.json",
        "pytorch_model-*.bin",
        "sentencepiece.bpe.model",
        "tokenizer.json",
        "tokenizer_config.json",
        "shared_vocabulary.txt",
        "shared_vocabulary.json",
        "special_tokens_map.json",
        "spiece.model",
        "vocab.json", #m2m100
        "model.safetensors",
        "model-*.safetensors",
        "model.safetensors.index.json",
        "quantize_config.json",
        "tokenizer.model",
        "vocabulary.json",
        "preprocessor_config.json",
        "added_tokens.json"
    ]

    kwargs = {
        "local_files_only": localFilesOnly,
        "allow_patterns": allowPatterns,
        #"tqdm_class": disabled_tqdm,
    }
    
    if modelConfig.revision is not None:
        kwargs["revision"] = modelConfig.revision

    if outputDir is not None:
        kwargs["local_dir"] = outputDir
        kwargs["local_dir_use_symlinks"] = False

    if cacheDir is not None:
        kwargs["cache_dir"] = cacheDir

    try:
        return huggingface_hub.snapshot_download(repoId, **kwargs)
    except (
        huggingface_hub.utils.HfHubHTTPError,
        requests.exceptions.ConnectionError,
    ) as exception:
        warnings.warn(
            "An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
            repoId,
            exception,
        )
        warnings.warn(
            "Trying to load the model directly from the local cache, if it exists."
        )

        kwargs["local_files_only"] = True
        return huggingface_hub.snapshot_download(repoId, **kwargs)