Spaces:
Runtime error
Runtime error
/* | |
* Copyright (C) 2023, Inria | |
* GRAPHDECO research group, https://team.inria.fr/graphdeco | |
* All rights reserved. | |
* | |
* This software is free for non-commercial, research and evaluation use | |
* under the terms of the LICENSE.md file. | |
* | |
* For inquiries contact george.drettakis@inria.fr | |
*/ | |
#include "forward.h" | |
#include "auxiliary.h" | |
#include <cooperative_groups.h> | |
#include <cooperative_groups/reduce.h> | |
namespace cg = cooperative_groups; | |
// Forward method for converting the input spherical harmonics | |
// coefficients of each Gaussian to a simple RGB color. | |
__device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, bool* clamped) | |
{ | |
// The implementation is loosely based on code for | |
// "Differentiable Point-Based Radiance Fields for | |
// Efficient View Synthesis" by Zhang et al. (2022) | |
glm::vec3 pos = means[idx]; | |
glm::vec3 dir = pos - campos; | |
dir = dir / glm::length(dir); | |
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs; | |
glm::vec3 result = SH_C0 * sh[0]; | |
if (deg > 0) | |
{ | |
float x = dir.x; | |
float y = dir.y; | |
float z = dir.z; | |
result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3]; | |
if (deg > 1) | |
{ | |
float xx = x * x, yy = y * y, zz = z * z; | |
float xy = x * y, yz = y * z, xz = x * z; | |
result = result + | |
SH_C2[0] * xy * sh[4] + | |
SH_C2[1] * yz * sh[5] + | |
SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] + | |
SH_C2[3] * xz * sh[7] + | |
SH_C2[4] * (xx - yy) * sh[8]; | |
if (deg > 2) | |
{ | |
result = result + | |
SH_C3[0] * y * (3.0f * xx - yy) * sh[9] + | |
SH_C3[1] * xy * z * sh[10] + | |
SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] + | |
SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] + | |
SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] + | |
SH_C3[5] * z * (xx - yy) * sh[14] + | |
SH_C3[6] * x * (xx - 3.0f * yy) * sh[15]; | |
} | |
} | |
} | |
result += 0.5f; | |
// RGB colors are clamped to positive values. If values are | |
// clamped, we need to keep track of this for the backward pass. | |
clamped[3 * idx + 0] = (result.x < 0); | |
clamped[3 * idx + 1] = (result.y < 0); | |
clamped[3 * idx + 2] = (result.z < 0); | |
return glm::max(result, 0.0f); | |
} | |
// Forward version of 2D covariance matrix computation | |
__device__ float3 computeCov2D(const float3& mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float* cov3D, const float* viewmatrix) | |
{ | |
// The following models the steps outlined by equations 29 | |
// and 31 in "EWA Splatting" (Zwicker et al., 2002). | |
// Additionally considers aspect / scaling of viewport. | |
// Transposes used to account for row-/column-major conventions. | |
float3 t = transformPoint4x3(mean, viewmatrix); | |
const float limx = 1.3f * tan_fovx; | |
const float limy = 1.3f * tan_fovy; | |
const float txtz = t.x / t.z; | |
const float tytz = t.y / t.z; | |
t.x = min(limx, max(-limx, txtz)) * t.z; | |
t.y = min(limy, max(-limy, tytz)) * t.z; | |
glm::mat3 J = glm::mat3( | |
focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z), | |
0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z), | |
0, 0, 0); | |
glm::mat3 W = glm::mat3( | |
viewmatrix[0], viewmatrix[4], viewmatrix[8], | |
viewmatrix[1], viewmatrix[5], viewmatrix[9], | |
viewmatrix[2], viewmatrix[6], viewmatrix[10]); | |
glm::mat3 T = W * J; | |
glm::mat3 Vrk = glm::mat3( | |
cov3D[0], cov3D[1], cov3D[2], | |
cov3D[1], cov3D[3], cov3D[4], | |
cov3D[2], cov3D[4], cov3D[5]); | |
glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T; | |
// Apply low-pass filter: every Gaussian should be at least | |
// one pixel wide/high. Discard 3rd row and column. | |
cov[0][0] += 0.3f; | |
cov[1][1] += 0.3f; | |
return { float(cov[0][0]), float(cov[0][1]), float(cov[1][1]) }; | |
} | |
// Forward method for converting scale and rotation properties of each | |
// Gaussian to a 3D covariance matrix in world space. Also takes care | |
// of quaternion normalization. | |
__device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float* cov3D) | |
{ | |
// Create scaling matrix | |
glm::mat3 S = glm::mat3(1.0f); | |
S[0][0] = mod * scale.x; | |
S[1][1] = mod * scale.y; | |
S[2][2] = mod * scale.z; | |
// Normalize quaternion to get valid rotation | |
glm::vec4 q = rot;// / glm::length(rot); | |
float r = q.x; | |
float x = q.y; | |
float y = q.z; | |
float z = q.w; | |
// Compute rotation matrix from quaternion | |
glm::mat3 R = glm::mat3( | |
1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y), | |
2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x), | |
2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y) | |
); | |
glm::mat3 M = S * R; | |
// Compute 3D world covariance matrix Sigma | |
glm::mat3 Sigma = glm::transpose(M) * M; | |
// Covariance is symmetric, only store upper right | |
cov3D[0] = Sigma[0][0]; | |
cov3D[1] = Sigma[0][1]; | |
cov3D[2] = Sigma[0][2]; | |
cov3D[3] = Sigma[1][1]; | |
cov3D[4] = Sigma[1][2]; | |
cov3D[5] = Sigma[2][2]; | |
} | |
// Perform initial steps for each Gaussian prior to rasterization. | |
template<int C> | |
__global__ void preprocessCUDA(int P, int D, int M, | |
const float* orig_points, | |
const glm::vec3* scales, | |
const float scale_modifier, | |
const glm::vec4* rotations, | |
const float* opacities, | |
const float* shs, | |
bool* clamped, | |
const float* cov3D_precomp, | |
const float* colors_precomp, | |
const float* viewmatrix, | |
const float* projmatrix, | |
const glm::vec3* cam_pos, | |
const int W, int H, | |
const float tan_fovx, float tan_fovy, | |
const float focal_x, float focal_y, | |
int* radii, | |
float2* points_xy_image, | |
float* depths, | |
float* cov3Ds, | |
float* rgb, | |
float4* conic_opacity, | |
const dim3 grid, | |
uint32_t* tiles_touched, | |
bool prefiltered) | |
{ | |
auto idx = cg::this_grid().thread_rank(); | |
if (idx >= P) | |
return; | |
// Initialize radius and touched tiles to 0. If this isn't changed, | |
// this Gaussian will not be processed further. | |
radii[idx] = 0; | |
tiles_touched[idx] = 0; | |
// Perform near culling, quit if outside. | |
float3 p_view; | |
if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view)) | |
return; | |
// Transform point by projecting | |
float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] }; | |
float4 p_hom = transformPoint4x4(p_orig, projmatrix); | |
float p_w = 1.0f / (p_hom.w + 0.0000001f); | |
float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w }; | |
// If 3D covariance matrix is precomputed, use it, otherwise compute | |
// from scaling and rotation parameters. | |
const float* cov3D; | |
if (cov3D_precomp != nullptr) | |
{ | |
cov3D = cov3D_precomp + idx * 6; | |
} | |
else | |
{ | |
computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6); | |
cov3D = cov3Ds + idx * 6; | |
} | |
// Compute 2D screen-space covariance matrix | |
float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix); | |
// Invert covariance (EWA algorithm) | |
float det = (cov.x * cov.z - cov.y * cov.y); | |
if (det == 0.0f) | |
return; | |
float det_inv = 1.f / det; | |
float3 conic = { cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv }; | |
// Compute extent in screen space (by finding eigenvalues of | |
// 2D covariance matrix). Use extent to compute a bounding rectangle | |
// of screen-space tiles that this Gaussian overlaps with. Quit if | |
// rectangle covers 0 tiles. | |
float mid = 0.5f * (cov.x + cov.z); | |
float lambda1 = mid + sqrt(max(0.1f, mid * mid - det)); | |
float lambda2 = mid - sqrt(max(0.1f, mid * mid - det)); | |
float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2))); | |
float2 point_image = { ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H) }; | |
uint2 rect_min, rect_max; | |
getRect(point_image, my_radius, rect_min, rect_max, grid); | |
if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0) | |
return; | |
// If colors have been precomputed, use them, otherwise convert | |
// spherical harmonics coefficients to RGB color. | |
if (colors_precomp == nullptr) | |
{ | |
glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3*)orig_points, *cam_pos, shs, clamped); | |
rgb[idx * C + 0] = result.x; | |
rgb[idx * C + 1] = result.y; | |
rgb[idx * C + 2] = result.z; | |
} | |
// Store some useful helper data for the next steps. | |
depths[idx] = p_view.z; | |
radii[idx] = my_radius; | |
points_xy_image[idx] = point_image; | |
// Inverse 2D covariance and opacity neatly pack into one float4 | |
conic_opacity[idx] = { conic.x, conic.y, conic.z, opacities[idx] }; | |
tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x); | |
} | |
// Main rasterization method. Collaboratively works on one tile per | |
// block, each thread treats one pixel. Alternates between fetching | |
// and rasterizing data. | |
template <uint32_t CHANNELS> | |
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y) | |
renderCUDA( | |
const uint2* __restrict__ ranges, | |
const uint32_t* __restrict__ point_list, | |
int W, int H, | |
const float2* __restrict__ points_xy_image, | |
const float* __restrict__ features, | |
const float* __restrict__ depths, | |
const float4* __restrict__ conic_opacity, | |
float* __restrict__ final_T, | |
uint32_t* __restrict__ n_contrib, | |
const float* __restrict__ bg_color, | |
float* __restrict__ out_color, | |
float* __restrict__ out_depth) | |
{ | |
// Identify current tile and associated min/max pixel range. | |
auto block = cg::this_thread_block(); | |
uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X; | |
uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y }; | |
uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) }; | |
uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y }; | |
uint32_t pix_id = W * pix.y + pix.x; | |
float2 pixf = { (float)pix.x, (float)pix.y }; | |
// Check if this thread is associated with a valid pixel or outside. | |
bool inside = pix.x < W&& pix.y < H; | |
// Done threads can help with fetching, but don't rasterize | |
bool done = !inside; | |
// Load start/end range of IDs to process in bit sorted list. | |
uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x]; | |
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE); | |
int toDo = range.y - range.x; | |
// Allocate storage for batches of collectively fetched data. | |
__shared__ int collected_id[BLOCK_SIZE]; | |
__shared__ float2 collected_xy[BLOCK_SIZE]; | |
__shared__ float4 collected_conic_opacity[BLOCK_SIZE]; | |
// Initialize helper variables | |
float T = 1.0f; | |
uint32_t contributor = 0; | |
uint32_t last_contributor = 0; | |
float C[CHANNELS] = { 0 }; | |
float D = { 0 }; | |
float acc = { 0.000001f }; | |
// Iterate over batches until all done or range is complete | |
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE) | |
{ | |
// End if entire block votes that it is done rasterizing | |
int num_done = __syncthreads_count(done); | |
if (num_done == BLOCK_SIZE) | |
break; | |
// Collectively fetch per-Gaussian data from global to shared | |
int progress = i * BLOCK_SIZE + block.thread_rank(); | |
if (range.x + progress < range.y) | |
{ | |
int coll_id = point_list[range.x + progress]; | |
collected_id[block.thread_rank()] = coll_id; | |
collected_xy[block.thread_rank()] = points_xy_image[coll_id]; | |
collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id]; | |
} | |
block.sync(); | |
// Iterate over current batch | |
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++) | |
{ | |
// Keep track of current position in range | |
contributor++; | |
// Resample using conic matrix (cf. "Surface | |
// Splatting" by Zwicker et al., 2001) | |
float2 xy = collected_xy[j]; | |
float2 d = { xy.x - pixf.x, xy.y - pixf.y }; | |
float4 con_o = collected_conic_opacity[j]; | |
float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y; | |
if (power > 0.0f) | |
continue; | |
// Eq. (2) from 3D Gaussian splatting paper. | |
// Obtain alpha by multiplying with Gaussian opacity | |
// and its exponential falloff from mean. | |
// Avoid numerical instabilities (see paper appendix). | |
float alpha = min(0.99f, con_o.w * exp(power)); | |
if (alpha < 1.0f / 255.0f) | |
continue; | |
float test_T = T * (1 - alpha); | |
if (test_T < 0.0001f) | |
{ | |
done = true; | |
continue; | |
} | |
// Eq. (3) from 3D Gaussian splatting paper. | |
for (int ch = 0; ch < CHANNELS; ch++) | |
C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T; | |
// if (D < 0.0001f && alpha > 0.05f){ | |
// D = depths[collected_id[j]]; | |
// } | |
D += depths[collected_id[j]] * alpha * T; | |
acc += alpha * T; | |
T = test_T; | |
// Keep track of last range entry to update this | |
// pixel. | |
last_contributor = contributor; | |
} | |
} | |
// All threads that treat valid pixel write out their final | |
// rendering data to the frame and auxiliary buffers. | |
if (inside) | |
{ | |
final_T[pix_id] = T; | |
n_contrib[pix_id] = last_contributor; | |
for (int ch = 0; ch < CHANNELS; ch++) | |
out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch]; | |
if (acc > 0.5f){ | |
out_depth[pix_id] = D/acc; | |
}else{ | |
out_depth[pix_id] = 0; | |
} | |
// out_depth[pix_id] = D; | |
} | |
} | |
void FORWARD::render( | |
const dim3 grid, dim3 block, | |
const uint2* ranges, | |
const uint32_t* point_list, | |
int W, int H, | |
const float2* means2D, | |
const float* colors, | |
const float* depths, | |
const float4* conic_opacity, | |
float* final_T, | |
uint32_t* n_contrib, | |
const float* bg_color, | |
float* out_color, | |
float* out_depth) | |
{ | |
renderCUDA<NUM_CHANNELS> << <grid, block >> > ( | |
ranges, | |
point_list, | |
W, H, | |
means2D, | |
colors, | |
depths, | |
conic_opacity, | |
final_T, | |
n_contrib, | |
bg_color, | |
out_color, | |
out_depth); | |
} | |
void FORWARD::preprocess(int P, int D, int M, | |
const float* means3D, | |
const glm::vec3* scales, | |
const float scale_modifier, | |
const glm::vec4* rotations, | |
const float* opacities, | |
const float* shs, | |
bool* clamped, | |
const float* cov3D_precomp, | |
const float* colors_precomp, | |
const float* viewmatrix, | |
const float* projmatrix, | |
const glm::vec3* cam_pos, | |
const int W, int H, | |
const float focal_x, float focal_y, | |
const float tan_fovx, float tan_fovy, | |
int* radii, | |
float2* means2D, | |
float* depths, | |
float* cov3Ds, | |
float* rgb, | |
float4* conic_opacity, | |
const dim3 grid, | |
uint32_t* tiles_touched, | |
bool prefiltered) | |
{ | |
preprocessCUDA<NUM_CHANNELS> << <(P + 255) / 256, 256 >> > ( | |
P, D, M, | |
means3D, | |
scales, | |
scale_modifier, | |
rotations, | |
opacities, | |
shs, | |
clamped, | |
cov3D_precomp, | |
colors_precomp, | |
viewmatrix, | |
projmatrix, | |
cam_pos, | |
W, H, | |
tan_fovx, tan_fovy, | |
focal_x, focal_y, | |
radii, | |
means2D, | |
depths, | |
cov3Ds, | |
rgb, | |
conic_opacity, | |
grid, | |
tiles_touched, | |
prefiltered | |
); | |
} |