Spaces:
Sleeping
Sleeping
File size: 2,533 Bytes
adf2111 08cbfae a46bb01 08cbfae b0a8cf0 08cbfae 977a5b3 08cbfae abf887b 08cbfae 977a5b3 08cbfae 8d9c7cb 08cbfae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import tensorflow as tf
import efficientnet.tfkeras as efn
from tensorflow.keras.layers import Input, GlobalAveragePooling2D, Dense
import numpy as np
import gradio as gr
# Dimensões da imagem
IMG_HEIGHT = 224
IMG_WIDTH = 224
# Função para construir o modelo
def build_model(img_height, img_width, n):
inp = Input(shape=(img_height, img_width, n))
efnet = efn.EfficientNetB0(
input_shape=(img_height, img_width, n),
weights='imagenet',
include_top=False
)
x = efnet(inp)
x = GlobalAveragePooling2D()(x)
x = Dense(2, activation='softmax')(x)
model = tf.keras.Model(inputs=inp, outputs=x)
opt = tf.keras.optimizers.Adam(learning_rate=0.000003)
loss = tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.01)
model.compile(optimizer=opt, loss=loss, metrics=['accuracy'])
return model
# Carregue o modelo treinado
loaded_model = build_model(IMG_HEIGHT, IMG_WIDTH, 3)
loaded_model.load_weights('modelo_treinado.h5')
# Função para realizar o pré-processamento da imagem de entrada
def preprocess_image(input_image):
# Redimensione a imagem para as dimensões esperadas pelo modelo
input_image = tf.image.resize(input_image, (IMG_HEIGHT, IMG_WIDTH))
# Normalização dos valores de pixel para o intervalo [0, 1]
input_image = input_image / 255.0
# Outras transformações, se necessárias (por exemplo, normalização adicional)
return input_image
# Função para fazer previsões usando o modelo treinado
def predict_image(input_image):
# Realize o pré-processamento na imagem de entrada
input_image = preprocess_image(input_image)
# Faça uma previsão usando o modelo carregado
input_image = tf.expand_dims(input_image, axis=0)
prediction = loaded_model.predict(input_image)
# A saída será uma matriz de previsões (no caso de classificação de duas classes, será algo como [[probabilidade_classe_0, probabilidade_classe_1]])
# Adicione lógica para interpretar o resultado e formatá-lo para exibição
class_names = ["Normal", "Cataract"]
predicted_class = class_names[np.argmax(prediction)]
probability = prediction[0][np.argmax(prediction)]
formatted_text = f"Predicted Class: {predicted_class}\nProbability: {probability:.2%}"
return formatted_text
# Crie uma interface Gradio para fazer previsões
iface = gr.Interface(
fn=predict_image,
inputs="image",
outputs="text",
interpretation="default"
)
# Execute a interface Gradio
iface.launch()
|