Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
import re | |
# Lista de modelos LLM disponíveis | |
list_llm = [ | |
"mistralai/Mistral-7B-Instruct-v0.2", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.1", | |
"google/gemma-7b-it", | |
"google/gemma-2b-it", | |
"HuggingFaceH4/zephyr-7b-beta", | |
"HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"meta-llama/Llama-2-7b-chat-hf", | |
"microsoft/phi-2", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"mosaicml/mpt-7b-instruct", | |
"tiiuae/falcon-7b-instruct", | |
"google/flan-t5-xxl" | |
] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# Função para carregar documentos PDF e dividir em chunks | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Função para criar o banco de dados vetorial | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
# Usando PersistentClient para persistir o banco de dados | |
new_client = chromadb.PersistentClient(path="./chroma_db") | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
# Função para inicializar a cadeia de QA com o modelo LLM | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
progress(0.1, desc="Inicializando tokenizer da HF...") | |
progress(0.5, desc="Inicializando Hub da HF...") | |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
load_in_8bit=True, | |
) | |
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]: | |
raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito") | |
elif llm_model == "microsoft/phi-2": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
trust_remote_code=True, | |
torch_dtype="auto", | |
) | |
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0": | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=250, | |
top_k=top_k, | |
) | |
elif llm_model == "meta-llama/Llama-2-7b-chat-hf": | |
raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...") | |
else: | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
) | |
progress(0.75, desc="Definindo memória de buffer...") | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
progress(0.8, desc="Definindo cadeia de recuperação...") | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
progress(0.9, desc="Concluído!") | |
return qa_chain | |
# Função para gerar um nome de coleção válido | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = collection_name.replace(" ", "-") | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
print('Caminho do arquivo: ', filepath) | |
print('Nome da coleção: ', collection_name) | |
return collection_name | |
# Função para inicializar o banco de dados | |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
progress(0.1, desc="Criando nome da coleção...") | |
collection_name = create_collection_name(list_file_path[0]) | |
progress(0.25, desc="Carregando documento...") | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
progress(0.5, desc="Gerando banco de dados vetorial...") | |
vector_db = create_db(doc_splits, collection_name) | |
progress(0.9, desc="Concluído!") | |
return vector_db, collection_name, "Completo!" | |
# Função para inicializar o modelo LLM | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm_name = list_llm[llm_option] | |
print("Nome do LLM: ", llm_name) | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "Completo!" | |
# Função para formatar o histórico de conversa | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"Usuário: {user_message}") | |
formatted_chat_history.append(f"Assistente: {bot_message}") | |
return formatted_chat_history | |
# Função para realizar a conversa com o chatbot | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Resposta útil:") != -1: | |
response_answer = response_answer.split("Resposta útil:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
# Função para carregar arquivos | |
def upload_file(file_obj): | |
list_file_path = [] | |
for idx, file in enumerate(file_obj): | |
file_path = file_obj.name | |
list_file_path.append(file_path) | |
return list_file_path | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
collection_name = gr.State() | |
gr.Markdown( | |
"""<center><h2>Chatbot baseado em PDF</center></h2> | |
<h3>Faça qualquer pergunta sobre seus documentos PDF</h3>""") | |
gr.Markdown( | |
"""<b>Nota:</b> Este assistente de IA, utilizando Langchain e LLMs de código aberto, realiza geração aumentada por recuperação (RAG) a partir de seus documentos PDF. \ | |
A interface do usuário mostra explicitamente várias etapas para ajudar a entender o fluxo de trabalho do RAG. | |
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (via memória conversacional), e inclui referências documentais para maior clareza.<br> | |
<br><b>Aviso:</b> Este espaço usa a CPU básica gratuita do Hugging Face. Algumas etapas e modelos LLM utilizados abaixo (pontos finais de inferência gratuitos) podem levar algum tempo para gerar uma resposta. | |
""") | |
with gr.Tab("Etapa 1 - Carregar PDF"): | |
with gr.Row(): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carregue seus documentos PDF (único ou múltiplos)") | |
# upload_btn = gr.UploadButton("Carregando documento...", height=100, file_count="multiple", file_types=["pdf"], scale=1) | |
with gr.Tab("Etapa 2 - Processar documento"): | |
with gr.Row(): | |
db_btn = gr.Radio(["ChromaDB"], label="Tipo de banco de dados vetorial", value = "ChromaDB", type="index", info="Escolha o banco de dados vetorial") | |
with gr.Accordion("Opções avançadas - Divisor de texto do documento", open=False): | |
with gr.Row(): | |
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Tamanho do bloco", info="Tamanho do bloco", interactive=True) | |
with gr.Row(): | |
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Sobreposição do bloco", info="Sobreposição do bloco", interactive=True) | |
with gr.Row(): | |
db_progress = gr.Textbox(label="Inicialização do banco de dados vetorial", value="Nenhum") | |
with gr.Row(): | |
db_btn = gr.Button("Gerar banco de dados vetorial") | |
with gr.Tab("Etapa 3 - Inicializar cadeia de QA"): | |
with gr.Row(): | |
llm_btn = gr.Radio(list_llm_simple, \ | |
label="Modelos LLM", value = list_llm_simple[0], type="index", info="Escolha seu modelo LLM") | |
with gr.Accordion("Opções avançadas - Modelo LLM", open=False): | |
with gr.Row(): | |
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperatura", info="Temperatura do modelo", interactive=True) | |
with gr.Row(): | |
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Máximo de Tokens", info="Máximo de tokens do modelo", interactive=True) | |
with gr.Row(): | |
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="Amostras top-k", info="Amostras top-k do modelo", interactive=True) | |
with gr.Row(): | |
llm_progress = gr.Textbox(value="Nenhum",label="Inicialização da cadeia QA") | |
with gr.Row(): | |
qachain_btn = gr.Button("Inicializar cadeia de Pergunta e Resposta") | |
with gr.Tab("Etapa 4 - Chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
with gr.Accordion("Avançado - Referências do documento", open=False): | |
with gr.Row(): | |
doc_source1 = gr.Textbox(label="Referência 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Página", scale=1) | |
with gr.Row(): | |
doc_source2 = gr.Textbox(label="Referência 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Página", scale=1) | |
with gr.Row(): | |
doc_source3 = gr.Textbox(label="Referência 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Página", scale=1) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Digite a mensagem (exemplo: 'Sobre o que é este documento?')", container=True) | |
with gr.Row(): | |
submit_btn = gr.Button("Enviar mensagem") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Limpar conversa") | |
# Eventos de pré-processamento | |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document]) | |
db_btn.click(initialize_database, \ | |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \ | |
outputs=[vector_db, collection_name, db_progress]) | |
qachain_btn.click(initialize_LLM, \ | |
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \ | |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \ | |
inputs=None, \ | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
# Eventos do Chatbot | |
msg.submit(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
submit_btn.click(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
clear_btn.click(lambda:[None,"",0,"",0,"",0], \ | |
inputs=None, \ | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ | |
queue=False) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() | |