Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import CLIPProcessor, CLIPModel
|
4 |
import re
|
|
|
5 |
|
6 |
-
# Load
|
7 |
-
model_name = "
|
8 |
-
|
9 |
-
processor = CLIPProcessor.from_pretrained(model_name)
|
10 |
|
11 |
-
# Regex for price
|
12 |
price_pattern = re.compile(r'(\bunder\b|\babove\b|\bbelow\b|\bbetween\b)?\s?(\d{1,5})\s?(AED|USD|EUR)?', re.IGNORECASE)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
Converts a list of input texts into embeddings using FashionCLIP.
|
17 |
-
"""
|
18 |
-
inputs = processor(text=text_list, return_tensors="pt", padding=True) # Corrected input format
|
19 |
-
with torch.no_grad():
|
20 |
-
text_embedding = model.get_text_features(**inputs)
|
21 |
-
return text_embedding
|
22 |
|
23 |
def extract_attributes(query):
|
24 |
"""
|
25 |
-
Extract structured fashion attributes dynamically using
|
26 |
"""
|
27 |
structured_output = {"Brand": "Unknown", "Category": "Unknown", "Gender": "Unknown", "Price": "Unknown"}
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
# Extract price
|
45 |
price_match = price_pattern.search(query)
|
46 |
if price_match:
|
47 |
condition, amount, currency = price_match.groups()
|
@@ -52,13 +50,14 @@ def extract_attributes(query):
|
|
52 |
# Define Gradio UI
|
53 |
def parse_query(user_query):
|
54 |
"""
|
55 |
-
|
56 |
"""
|
57 |
parsed_output = extract_attributes(user_query)
|
58 |
-
return parsed_output #
|
59 |
|
|
|
60 |
with gr.Blocks() as demo:
|
61 |
-
gr.Markdown("# 🛍️ Fashion Query Parser using
|
62 |
|
63 |
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., Gucci men’s perfume under 200AED")
|
64 |
output_box = gr.JSON(label="Parsed Output")
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import re
|
4 |
+
from transformers import pipeline
|
5 |
|
6 |
+
# Load fine-tuned NER model from Hugging Face Hub
|
7 |
+
model_name = "luxury-fashion-ner"
|
8 |
+
ner_pipeline = pipeline("ner", model=model_name, tokenizer=model_name)
|
|
|
9 |
|
10 |
+
# Regex for extracting price
|
11 |
price_pattern = re.compile(r'(\bunder\b|\babove\b|\bbelow\b|\bbetween\b)?\s?(\d{1,5})\s?(AED|USD|EUR)?', re.IGNORECASE)
|
12 |
|
13 |
+
# Keywords for gender extraction
|
14 |
+
gender_keywords = ["men", "male", "women", "female", "unisex"]
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def extract_attributes(query):
|
17 |
"""
|
18 |
+
Extract structured fashion attributes dynamically using the fine-tuned NER model.
|
19 |
"""
|
20 |
structured_output = {"Brand": "Unknown", "Category": "Unknown", "Gender": "Unknown", "Price": "Unknown"}
|
21 |
|
22 |
+
# Run NER model on query
|
23 |
+
entities = ner_pipeline(query)
|
24 |
|
25 |
+
for entity in entities:
|
26 |
+
entity_text = entity["word"].replace("##", "") # Fix tokenization artifacts
|
27 |
+
entity_label = entity["entity"]
|
28 |
|
29 |
+
if "ORG" in entity_label: # Organization = Brand
|
30 |
+
structured_output["Brand"] = entity_text
|
31 |
+
elif "MISC" in entity_label: # Miscellaneous = Category
|
32 |
+
structured_output["Category"] = entity_text
|
33 |
+
elif "LOC" in entity_label: # Locations (sometimes used for brands)
|
34 |
+
structured_output["Brand"] = entity_text
|
35 |
|
36 |
+
# Extract gender
|
37 |
+
for gender in gender_keywords:
|
38 |
+
if gender in query.lower():
|
39 |
+
structured_output["Gender"] = gender.capitalize()
|
40 |
+
break
|
41 |
|
42 |
+
# Extract price
|
43 |
price_match = price_pattern.search(query)
|
44 |
if price_match:
|
45 |
condition, amount, currency = price_match.groups()
|
|
|
50 |
# Define Gradio UI
|
51 |
def parse_query(user_query):
|
52 |
"""
|
53 |
+
Parses fashion-related queries into structured attributes.
|
54 |
"""
|
55 |
parsed_output = extract_attributes(user_query)
|
56 |
+
return parsed_output # JSON output
|
57 |
|
58 |
+
# Create Gradio Interface
|
59 |
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("# 🛍️ Luxury Fashion Query Parser using Fine-Tuned NER Model")
|
61 |
|
62 |
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., Gucci men’s perfume under 200AED")
|
63 |
output_box = gr.JSON(label="Parsed Output")
|