File size: 2,034 Bytes
4ae7865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# from langchain.document_loaders import DirectoryLoader
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
# from langchain.embeddings import OpenAIEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
import openai 
from dotenv import load_dotenv
import os
import shutil
import logging

logger = logging.getLogger(__name__)

# Load environment variables. Assumes that project contains .env file with API keys
load_dotenv()
#---- Set OpenAI API key 
# Change environment variable name from "OPENAI_API_KEY" to the name given in 
# your .env file.

CHROMA_PATH = "chroma"
DATA_PATH = "data/"


def main():
    generate_data_store()


def generate_data_store():
    logger.info("Loading documents..")
    documents = load_documents()
    chunks = split_text(documents)
    save_to_chroma(chunks)


def load_documents():
    loader = DirectoryLoader(DATA_PATH, glob="*.pdf")
    documents = loader.load()
    logger.info("Found {:d} documents..".format(len(documents)))

    return documents


def split_text(documents: list[Document]):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1800,
        chunk_overlap=100,
        length_function=len,
        add_start_index=True,
    )
    chunks = text_splitter.split_documents(documents)
    print(f"Split {len(documents)} documents into {len(chunks)} chunks.")

    document = chunks[10]
    print(document.page_content)
    print(document.metadata)

    return chunks


def save_to_chroma(chunks: list[Document]):
    # Clear out the database first.
    if os.path.exists(CHROMA_PATH):
        shutil.rmtree(CHROMA_PATH)

    # Create a new DB from the documents.
    db = Chroma.from_documents(
        chunks, HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"), persist_directory=CHROMA_PATH
    )
    db.persist()
    print(f"Saved {len(chunks)} chunks to {CHROMA_PATH}.")