File size: 1,359 Bytes
4577277 ee8a448 fea3a1e 4577277 fea3a1e 4577277 5dd0274 ee1b10f fea3a1e ee1b10f fea3a1e fd651b5 f37d0b8 4577277 fd651b5 4577277 ee8a448 67d2f1c a326ae9 4577277 67d2f1c ee8a448 4577277 a326ae9 ee8a448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from distutils.command.upload import upload
import streamlit as st
from io import StringIO
from PIL import Image
import pandas as pd
import numpy as np
#import glob
#import os
import torch
import torch.nn as nn
#from torch.utils.data import Dataset, DataLoader
import torchvision.models as models
#from torchinfo import summary
#from sklearn.model_selection import StratifiedKFold
#from sklearn.metrics import accuracy_score
#from tqdm import tqdm
#import opencv-python
import cv2
import albumentations as A # Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. (https://albumentations.ai/)
#import matplotlib.pyplot as plt
#import seaborn as sns
from albumentations.pytorch.transforms import ToTensorV2
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(2048, 21)
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True)
st.title("some big ML function")
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
if ".jpg" in uploaded_file.name or ".png" in uploaded_file.name:
img = Image.open(uploaded_file)
st.image(img)
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
elif ".csv" in uploaded_file.name:
dataframe = pd.read_csv(uploaded_file)
st.write(dataframe)
|