File size: 44,285 Bytes
bc5f7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ada85f
 
 
 
 
3d323ba
8ada85f
 
 
 
 
d96e417
5a18d30
bc5f7bd
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1a76e
 
8ada85f
bf1a76e
 
 
4331937
bf1a76e
bc5f7bd
c364d83
f193391
bf1a76e
 
 
 
 
 
 
c364d83
bf1a76e
 
 
c364d83
bf1a76e
 
 
 
 
8ada85f
bc5f7bd
8ada85f
 
 
 
3d323ba
8ada85f
 
3d323ba
8ada85f
 
3d323ba
8ada85f
 
 
 
 
3d323ba
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
3d323ba
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5f7bd
8ada85f
bc5f7bd
 
8ada85f
bc5f7bd
 
c364d83
8ada85f
 
 
 
c364d83
8ada85f
 
 
 
 
 
 
 
 
 
c364d83
 
8ada85f
 
 
 
 
bf1a76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d323ba
 
8ada85f
bc5f7bd
8ada85f
bf1a76e
 
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c364d83
 
 
 
 
 
 
 
 
 
 
bc5f7bd
c364d83
bc5f7bd
8ada85f
3d323ba
 
 
 
 
 
 
 
bc5f7bd
8ada85f
3d323ba
 
 
bc5f7bd
3d323ba
 
 
 
bc5f7bd
3d323ba
 
 
bc5f7bd
3d323ba
 
 
 
bc5f7bd
3d323ba
 
 
03abe3f
8ada85f
 
 
 
 
 
 
 
 
 
 
 
03abe3f
8ada85f
 
 
 
03abe3f
 
 
 
8ada85f
 
 
 
 
03abe3f
 
 
 
 
 
 
 
 
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5f7bd
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d323ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c364d83
 
 
 
 
 
 
 
bc5f7bd
 
c364d83
 
bc5f7bd
a03d7a6
8ada85f
3d323ba
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2d93b
 
 
 
 
8ada85f
 
 
 
 
 
8849bf7
 
 
8ada85f
 
 
 
 
 
 
 
 
 
3d323ba
8ada85f
 
 
 
 
352d45a
 
 
 
bdadca6
352d45a
 
bdadca6
352d45a
 
 
bdadca6
 
 
 
 
 
 
 
 
cdc836d
bdadca6
0f56da4
8ada85f
 
 
 
 
bc5f7bd
 
 
 
8ada85f
b19a14f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
# import os
# import numpy as np
# import torch
# import torch.nn as nn
# import gradio as gr
# import time
# from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
# from torchvision.ops import nms, box_iou
# import torch.nn.functional as F
# from torchvision import transforms
# from PIL import Image, ImageDraw, ImageFont, ImageFilter
# from breed_health_info import breed_health_info
# from breed_noise_info import breed_noise_info
# from dog_database import get_dog_description, dog_data
# from scoring_calculation_system import UserPreferences
# from recommendation_html_format import format_recommendation_html, get_breed_recommendations
# from history_manager import UserHistoryManager
# from search_history import create_history_tab, create_history_component
# from styles import get_css_styles
# from breed_detection import create_detection_tab
# from breed_comparison import create_comparison_tab
# from breed_recommendation import create_recommendation_tab
# from html_templates import (
#     format_description_html,
#     format_single_dog_result,
#     format_multiple_breeds_result,
#     format_error_message,
#     format_warning_html,
#     format_multi_dog_container,
#     format_breed_details_html,
#     get_color_scheme,
#     get_akc_breeds_link
# )
# from urllib.parse import quote
# from ultralytics import YOLO
# import asyncio
# import traceback


# model_yolo = YOLO('yolov8l.pt')

# history_manager = UserHistoryManager()

# dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
#               "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
#               "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
#               "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
#               "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
#               "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
#               "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
#               "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
#               "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
#               "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
#               "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
#               "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
#               "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
#               "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
#               "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
#               "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
#               "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
#               "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
#               "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
#               "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
#               "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
#               "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
#               "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
#               "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
#               "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
#               "Wire-Haired_Fox_Terrier"]


# class MultiHeadAttention(nn.Module):

#     def __init__(self, in_dim, num_heads=8):
#         super().__init__()
#         self.num_heads = num_heads
#         self.head_dim = max(1, in_dim // num_heads)
#         self.scaled_dim = self.head_dim * num_heads
#         self.fc_in = nn.Linear(in_dim, self.scaled_dim)
#         self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
#         self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
#         self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
#         self.fc_out = nn.Linear(self.scaled_dim, in_dim)

#     def forward(self, x):
#         N = x.shape[0]
#         x = self.fc_in(x)
#         q = self.query(x).view(N, self.num_heads, self.head_dim)
#         k = self.key(x).view(N, self.num_heads, self.head_dim)
#         v = self.value(x).view(N, self.num_heads, self.head_dim)

#         energy = torch.einsum("nqd,nkd->nqk", [q, k])
#         attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

#         out = torch.einsum("nqk,nvd->nqd", [attention, v])
#         out = out.reshape(N, self.scaled_dim)
#         out = self.fc_out(out)
#         return out

# class BaseModel(nn.Module):
#     def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
#         super().__init__()
#         self.device = device
#         self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
#         self.feature_dim = self.backbone.classifier[1].in_features
#         self.backbone.classifier = nn.Identity()

#         self.num_heads = max(1, min(8, self.feature_dim // 64))
#         self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

#         self.classifier = nn.Sequential(
#             nn.LayerNorm(self.feature_dim),
#             nn.Dropout(0.3),
#             nn.Linear(self.feature_dim, num_classes)
#         )

#         self.to(device)

#     def forward(self, x):
#         x = x.to(self.device)
#         features = self.backbone(x)
#         attended_features = self.attention(features)
#         logits = self.classifier(attended_features)
#         return logits, attended_features

# # Initialize model
# num_classes = len(dog_breeds)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# # Initialize base model
# model = BaseModel(num_classes=num_classes, device=device).to(device)

# # Load model path
# model_path = "124_best_model_dog.pth"
# checkpoint = torch.load(model_path, map_location=device)

# # Load model state
# model.load_state_dict(checkpoint["base_model"], strict=False)
# model.eval()

# # Image preprocessing function
# def preprocess_image(image):
#     # If the image is numpy.ndarray turn into PIL.Image
#     if isinstance(image, np.ndarray):
#         image = Image.fromarray(image)

#     # Use torchvision.transforms to process images
#     transform = transforms.Compose([
#         transforms.Resize((224, 224)),
#         transforms.ToTensor(),
#         transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#     ])

#     return transform(image).unsqueeze(0)

# async def predict_single_dog(image):
#     """
#     Predicts the dog breed using only the classifier.
#     Args:
#         image: PIL Image or numpy array
#     Returns:
#         tuple: (top1_prob, topk_breeds, relative_probs)
#     """
#     image_tensor = preprocess_image(image).to(device)
    
#     with torch.no_grad():
#         # Get model outputs (只使用logits,不需要features)
#         logits = model(image_tensor)[0]  # 如果model仍返回tuple,取第一個元素
#         probs = F.softmax(logits, dim=1)
        
#         # Classifier prediction
#         top5_prob, top5_idx = torch.topk(probs, k=5)
#         breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
#         probabilities = [prob.item() for prob in top5_prob[0]]
        
#         # Calculate relative probabilities
#         sum_probs = sum(probabilities[:3])  # 只取前三個來計算相對概率
#         relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
        
#         # Debug output
#         print("\nClassifier Predictions:")
#         for breed, prob in zip(breeds[:5], probabilities[:5]):
#             print(f"{breed}: {prob:.4f}")
            
#         return probabilities[0], breeds[:3], relative_probs


# async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
#     results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
#     dogs = []
#     boxes = []
#     for box in results.boxes:
#         if box.cls == 16:  # COCO dataset class for dog is 16
#             xyxy = box.xyxy[0].tolist()
#             confidence = box.conf.item()
#             boxes.append((xyxy, confidence))

#     if not boxes:
#         dogs.append((image, 1.0, [0, 0, image.width, image.height]))
#     else:
#         nms_boxes = non_max_suppression(boxes, iou_threshold)

#         for box, confidence in nms_boxes:
#             x1, y1, x2, y2 = box
#             w, h = x2 - x1, y2 - y1
#             x1 = max(0, x1 - w * 0.05)
#             y1 = max(0, y1 - h * 0.05)
#             x2 = min(image.width, x2 + w * 0.05)
#             y2 = min(image.height, y2 + h * 0.05)
#             cropped_image = image.crop((x1, y1, x2, y2))
#             dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))

#     return dogs

# def non_max_suppression(boxes, iou_threshold):
#     keep = []
#     boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
#     while boxes:
#         current = boxes.pop(0)
#         keep.append(current)
#         boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
#     return keep


# def calculate_iou(box1, box2):
#     x1 = max(box1[0], box2[0])
#     y1 = max(box1[1], box2[1])
#     x2 = min(box1[2], box2[2])
#     y2 = min(box1[3], box2[3])

#     intersection = max(0, x2 - x1) * max(0, y2 - y1)
#     area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
#     area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

#     iou = intersection / float(area1 + area2 - intersection)
#     return iou


# def create_breed_comparison(breed1: str, breed2: str) -> dict:
#     breed1_info = get_dog_description(breed1)
#     breed2_info = get_dog_description(breed2)

#     # 標準化數值轉換
#     value_mapping = {
#         'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
#         'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
#         'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
#         'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
#     }

#     comparison_data = {
#         breed1: {},
#         breed2: {}
#     }

#     for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
#         comparison_data[breed] = {
#             'Size': value_mapping['Size'].get(info['Size'], 2),  # 預設 Medium
#             'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2),  # 預設 Moderate
#             'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
#             'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
#             'Good_with_Children': info['Good with Children'] == 'Yes',
#             'Original_Data': info
#         }

#     return comparison_data


# async def predict(image):
#     """
#     Main prediction function that handles both single and multiple dog detection.

#     Args:
#         image: PIL Image or numpy array

#     Returns:
#         tuple: (html_output, annotated_image, initial_state)
#     """
#     if image is None:
#         return format_warning_html("Please upload an image to start."), None, None

#     try:
#         if isinstance(image, np.ndarray):
#             image = Image.fromarray(image)

#         # Detect dogs in the image
#         dogs = await detect_multiple_dogs(image)
#         color_scheme = get_color_scheme(len(dogs) == 1)

#         # Prepare for annotation
#         annotated_image = image.copy()
#         draw = ImageDraw.Draw(annotated_image)

#         try:
#             font = ImageFont.truetype("arial.ttf", 24)
#         except:
#             font = ImageFont.load_default()

#         dogs_info = ""

#         # Process each detected dog
#         for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
#             color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]

#             # Draw box and label on image
#             draw.rectangle(box, outline=color, width=4)
#             label = f"Dog {i+1}"
#             label_bbox = draw.textbbox((0, 0), label, font=font)
#             label_width = label_bbox[2] - label_bbox[0]
#             label_height = label_bbox[3] - label_bbox[1]

#             # Draw label background and text
#             label_x = box[0] + 5
#             label_y = box[1] + 5
#             draw.rectangle(
#                 [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
#                 fill='white',
#                 outline=color,
#                 width=2
#             )
#             draw.text((label_x, label_y), label, fill=color, font=font)

#             # Predict breed
#             top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
#             combined_confidence = detection_confidence * top1_prob

#             # Format results based on confidence with error handling
#             try:
#                 if combined_confidence < 0.2:
#                     dogs_info += format_error_message(color, i+1)
#                 elif top1_prob >= 0.45:
#                     breed = topk_breeds[0]
#                     description = get_dog_description(breed)
#                     # Handle missing breed description
#                     if description is None:
#                         # 如果沒有描述,創建一個基本描述
#                         description = {
#                             "Name": breed,
#                             "Size": "Unknown",
#                             "Exercise Needs": "Unknown",
#                             "Grooming Needs": "Unknown",
#                             "Care Level": "Unknown",
#                             "Good with Children": "Unknown",
#                             "Description": f"Identified as {breed.replace('_', ' ')}"
#                         }
#                     dogs_info += format_single_dog_result(breed, description, color)
#                 else:
#                     # 修改format_multiple_breeds_result的調用,包含錯誤處理
#                     dogs_info += format_multiple_breeds_result(
#                         topk_breeds,
#                         relative_probs,
#                         color,
#                         i+1,
#                         lambda breed: get_dog_description(breed) or {
#                             "Name": breed,
#                             "Size": "Unknown",
#                             "Exercise Needs": "Unknown",
#                             "Grooming Needs": "Unknown",
#                             "Care Level": "Unknown",
#                             "Good with Children": "Unknown",
#                             "Description": f"Identified as {breed.replace('_', ' ')}"
#                         }
#                     )
#             except Exception as e:
#                 print(f"Error formatting results for dog {i+1}: {str(e)}")
#                 dogs_info += format_error_message(color, i+1)

#         # Wrap final HTML output
#         html_output = format_multi_dog_container(dogs_info)

#         # Prepare initial state
#         initial_state = {
#             "dogs_info": dogs_info,
#             "image": annotated_image,
#             "is_multi_dog": len(dogs) > 1,
#             "html_output": html_output
#         }

#         return html_output, annotated_image, initial_state

#     except Exception as e:
#         error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
#         print(error_msg)
#         return format_warning_html(error_msg), None, None


# def show_details_html(choice, previous_output, initial_state):
#     """
#     Generate detailed HTML view for a selected breed.

#     Args:
#         choice: str, Selected breed option
#         previous_output: str, Previous HTML output
#         initial_state: dict, Current state information

#     Returns:
#         tuple: (html_output, gradio_update, updated_state)
#     """
#     if not choice:
#         return previous_output, gr.update(visible=True), initial_state

#     try:
#         breed = choice.split("More about ")[-1]
#         description = get_dog_description(breed)
#         html_output = format_breed_details_html(description, breed)

#         # Update state
#         initial_state["current_description"] = html_output
#         initial_state["original_buttons"] = initial_state.get("buttons", [])

#         return html_output, gr.update(visible=True), initial_state

#     except Exception as e:
#         error_msg = f"An error occurred while showing details: {e}"
#         print(error_msg)
#         return format_warning_html(error_msg), gr.update(visible=True), initial_state

# def main():
#     with gr.Blocks(css=get_css_styles()) as iface:
#         # Header HTML

#         gr.HTML("""
#         <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
#             <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
#                 🐾 PawMatch AI
#             </h1>
#             <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
#                 Your Smart Dog Breed Guide
#             </h2>
#             <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
#             <p style='color: #718096; font-size: 0.9em;'>
#                 Powered by AI • Breed Recognition • Smart Matching • Companion Guide
#             </p>
#         </header>
#         """)

#         # 先創建歷史組件實例(但不創建標籤頁)
#         history_component = create_history_component()

#         with gr.Tabs():
#             # 1. 品種檢測標籤頁
#             example_images = [
#                 'Border_Collie.jpg',
#                 'Golden_Retriever.jpeg',
#                 'Saint_Bernard.jpeg',
#                 'Samoyed.jpg',
#                 'French_Bulldog.jpeg'
#             ]
#             detection_components = create_detection_tab(predict, example_images)

#             # 2. 品種比較標籤頁
#             comparison_components = create_comparison_tab(
#                 dog_breeds=dog_breeds,
#                 get_dog_description=get_dog_description,
#                 breed_health_info=breed_health_info,
#                 breed_noise_info=breed_noise_info
#             )

#             # 3. 品種推薦標籤頁
#             recommendation_components = create_recommendation_tab(
#                 UserPreferences=UserPreferences,
#                 get_breed_recommendations=get_breed_recommendations,
#                 format_recommendation_html=format_recommendation_html,
#                 history_component=history_component
#             )


#             # 4. 最後創建歷史記錄標籤頁
#             create_history_tab(history_component)

#         # Footer
#         gr.HTML('''
#             <div style="
#                 display: flex;
#                 align-items: center;
#                 justify-content: center;
#                 gap: 20px;
#                 padding: 20px 0;
#             ">
#                 <p style="
#                     font-family: 'Arial', sans-serif;
#                     font-size: 14px;
#                     font-weight: 500;
#                     letter-spacing: 2px;
#                     background: linear-gradient(90deg, #555, #007ACC);
#                     -webkit-background-clip: text;
#                     -webkit-text-fill-color: transparent;
#                     margin: 0;
#                     text-transform: uppercase;
#                     display: inline-block;
#                 ">EXPLORE THE CODE →</p>
#                 <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
#                     <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
#                 </a>
#             </div>
#         ''')

#     return iface

# if __name__ == "__main__":
#     iface = main()
#     iface.launch()

import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
    format_description_html,
    format_single_dog_result,
    format_multiple_breeds_result,
    format_error_message,
    format_warning_html,
    format_multi_dog_container,
    format_breed_details_html,
    get_color_scheme,
    get_akc_breeds_link
)
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
import spaces
import torch.cuda.amp

# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['HF_ZERO_GPU'] = '1'  # 明確告訴系統我們要使用 ZeroGPU
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'

@spaces.GPU
def get_device():
    print("Initializing device configuration...")
    
    try:
        # 強制進行 CUDA 初始化
        torch.cuda.init()
        # 使用 mixed precision
        torch.set_float32_matmul_precision('medium')
        
        if torch.cuda.is_available():
            device = torch.device('cuda')
            # 設置默認的 CUDA 設備
            torch.cuda.set_device(device)
            print(f"Successfully initialized CUDA device")
            return device
    except Exception as e:
        print(f"GPU initialization error: {str(e)}")
    
    print("Using CPU fallback")
    return torch.device('cpu')

device = get_device()

history_manager = UserHistoryManager()

dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
              "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
              "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
              "Wire-Haired_Fox_Terrier"]


class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device=None):
        super().__init__()
        if device is None:
            device = get_device()
        self.device = device
        print(f"Initializing model on device: {device}")

        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1).to(self.device)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads).to(self.device)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        if x.device != self.device:
            x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features

def load_model(model_path, model_instance, device):
    """
    優化的模型載入函數,支援 ZeroGPU 和混合精度計算
    
    Args:
        model_path: 模型檔案的路徑
        model_instance: BaseModel 的實例
        device: 計算設備(CPU 或 GPU)
    
    Returns:
        載入權重後的模型實例
    """
    try:
        print(f"正在將模型載入到設備: {device}")
        
        # 使用混合精度計算來優化記憶體使用
        with torch.cuda.amp.autocast(enabled=device.type == 'cuda'):
            # 載入檢查點,使用 weights_only=True 來避免警告
            checkpoint = torch.load(
                model_path,
                map_location=device,
                weights_only=True
            )
            
            # 載入模型權重
            model_instance.load_state_dict(checkpoint['base_model'], strict=False)
            
            # 確保模型在正確的設備上
            if device.type == 'cuda':
                model_instance = model_instance.to(device)
                
            # 設置為評估模式
            model_instance.eval()
            
            print("模型載入成功")
            return model_instance
            
    except Exception as e:
        print(f"模型載入出錯: {str(e)}")
        print("嘗試使用基本載入方式...")
        
        # 如果優化載入失敗,退回到基本載入方式
        checkpoint = torch.load(model_path, map_location=device)
        model_instance.load_state_dict(checkpoint['base_model'], strict=False)
        model_instance.eval()
        return model_instance
        
# Initialize model
num_classes = len(dog_breeds)

model = BaseModel(num_classes=num_classes, device=device)

# 使用優化後的載入函數
model = load_model("124_best_model_dog.pth", model, device)
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)

def initialize_yolo_model(device):
    try:
        model_yolo = YOLO('yolov8l.pt')
        if torch.cuda.is_available():
            model_yolo.to(device)
        print(f"YOLO model initialized on {device}")
        return model_yolo
    except Exception as e:
        print(f"Error initializing YOLO model: {str(e)}")
        print("Attempting to initialize YOLO model on CPU")
        return YOLO('yolov8l.pt')

model_yolo = initialize_yolo_model(device)

async def predict_single_dog(image):
    """
    Predicts the dog breed using only the classifier.
    Args:
        image: PIL Image or numpy array
    Returns:
        tuple: (top1_prob, topk_breeds, relative_probs)
    """
    image_tensor = preprocess_image(image).to(device)

    with torch.no_grad():
        # Get model outputs (只使用logits,不需要features)
        logits = model(image_tensor)[0]  # 如果model仍返回tuple,取第一個元素
        probs = F.softmax(logits, dim=1)

        # Classifier prediction
        top5_prob, top5_idx = torch.topk(probs, k=5)
        breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
        probabilities = [prob.item() for prob in top5_prob[0]]

        # Calculate relative probabilities
        sum_probs = sum(probabilities[:3])  # 只取前三個來計算相對概率
        relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]

        # Debug output
        print("\nClassifier Predictions:")
        for breed, prob in zip(breeds[:5], probabilities[:5]):
            print(f"{breed}: {prob:.4f}")

        return probabilities[0], breeds[:3], relative_probs


async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
    results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
    dogs = []
    boxes = []
    for box in results.boxes:
        if box.cls == 16:  # COCO dataset class for dog is 16
            xyxy = box.xyxy[0].tolist()
            confidence = box.conf.item()
            boxes.append((xyxy, confidence))

    if not boxes:
        dogs.append((image, 1.0, [0, 0, image.width, image.height]))
    else:
        nms_boxes = non_max_suppression(boxes, iou_threshold)

        for box, confidence in nms_boxes:
            x1, y1, x2, y2 = box
            w, h = x2 - x1, y2 - y1
            x1 = max(0, x1 - w * 0.05)
            y1 = max(0, y1 - h * 0.05)
            x2 = min(image.width, x2 + w * 0.05)
            y2 = min(image.height, y2 + h * 0.05)
            cropped_image = image.crop((x1, y1, x2, y2))
            dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))

    return dogs

def non_max_suppression(boxes, iou_threshold):
    keep = []
    boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
    while boxes:
        current = boxes.pop(0)
        keep.append(current)
        boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
    return keep


def calculate_iou(box1, box2):
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])

    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

    iou = intersection / float(area1 + area2 - intersection)
    return iou



def create_breed_comparison(breed1: str, breed2: str) -> dict:
    breed1_info = get_dog_description(breed1)
    breed2_info = get_dog_description(breed2)

    # 標準化數值轉換
    value_mapping = {
        'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
        'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
        'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
        'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
    }

    comparison_data = {
        breed1: {},
        breed2: {}
    }

    for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
        comparison_data[breed] = {
            'Size': value_mapping['Size'].get(info['Size'], 2),  # 預設 Medium
            'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2),  # 預設 Moderate
            'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
            'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
            'Good_with_Children': info['Good with Children'] == 'Yes',
            'Original_Data': info
        }

    return comparison_data


async def predict(image):
    """
    Main prediction function that handles both single and multiple dog detection.

    Args:
        image: PIL Image or numpy array

    Returns:
        tuple: (html_output, annotated_image, initial_state)
    """
    if image is None:
        return format_warning_html("Please upload an image to start."), None, None

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        # Detect dogs in the image
        dogs = await detect_multiple_dogs(image)
        color_scheme = get_color_scheme(len(dogs) == 1)

        # Prepare for annotation
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)

        try:
            font = ImageFont.truetype("arial.ttf", 24)
        except:
            font = ImageFont.load_default()

        dogs_info = ""

        # Process each detected dog
        for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
            color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]

            # Draw box and label on image
            draw.rectangle(box, outline=color, width=4)
            label = f"Dog {i+1}"
            label_bbox = draw.textbbox((0, 0), label, font=font)
            label_width = label_bbox[2] - label_bbox[0]
            label_height = label_bbox[3] - label_bbox[1]

            # Draw label background and text
            label_x = box[0] + 5
            label_y = box[1] + 5
            draw.rectangle(
                [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
                fill='white',
                outline=color,
                width=2
            )
            draw.text((label_x, label_y), label, fill=color, font=font)

            # Predict breed
            top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
            combined_confidence = detection_confidence * top1_prob

            # Format results based on confidence with error handling
            try:
                if combined_confidence < 0.2:
                    dogs_info += format_error_message(color, i+1)
                elif top1_prob >= 0.45:
                    breed = topk_breeds[0]
                    description = get_dog_description(breed)
                    # Handle missing breed description
                    if description is None:
                        # 如果沒有描述,創建一個基本描述
                        description = {
                            "Name": breed,
                            "Size": "Unknown",
                            "Exercise Needs": "Unknown",
                            "Grooming Needs": "Unknown",
                            "Care Level": "Unknown",
                            "Good with Children": "Unknown",
                            "Description": f"Identified as {breed.replace('_', ' ')}"
                        }
                    dogs_info += format_single_dog_result(breed, description, color)
                else:
                    # 修改format_multiple_breeds_result的調用,包含錯誤處理
                    dogs_info += format_multiple_breeds_result(
                        topk_breeds,
                        relative_probs,
                        color,
                        i+1,
                        lambda breed: get_dog_description(breed) or {
                            "Name": breed,
                            "Size": "Unknown",
                            "Exercise Needs": "Unknown",
                            "Grooming Needs": "Unknown",
                            "Care Level": "Unknown",
                            "Good with Children": "Unknown",
                            "Description": f"Identified as {breed.replace('_', ' ')}"
                        }
                    )
            except Exception as e:
                print(f"Error formatting results for dog {i+1}: {str(e)}")
                dogs_info += format_error_message(color, i+1)

        # Wrap final HTML output
        html_output = format_multi_dog_container(dogs_info)

        # Prepare initial state
        initial_state = {
            "dogs_info": dogs_info,
            "image": annotated_image,
            "is_multi_dog": len(dogs) > 1,
            "html_output": html_output
        }

        return html_output, annotated_image, initial_state

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        print(error_msg)
        return format_warning_html(error_msg), None, None


def show_details_html(choice, previous_output, initial_state):
    """
    Generate detailed HTML view for a selected breed.

    Args:
        choice: str, Selected breed option
        previous_output: str, Previous HTML output
        initial_state: dict, Current state information

    Returns:
        tuple: (html_output, gradio_update, updated_state)
    """
    if not choice:
        return previous_output, gr.update(visible=True), initial_state

    try:
        breed = choice.split("More about ")[-1]
        description = get_dog_description(breed)
        html_output = format_breed_details_html(description, breed)

        # Update state
        initial_state["current_description"] = html_output
        initial_state["original_buttons"] = initial_state.get("buttons", [])

        return html_output, gr.update(visible=True), initial_state

    except Exception as e:
        error_msg = f"An error occurred while showing details: {e}"
        print(error_msg)
        return format_warning_html(error_msg), gr.update(visible=True), initial_state

def main():
    print("\n=== System Information ===")
    print(f"PyTorch Version: {torch.__version__}")
    print(f"CUDA Available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
        print(f"CUDA Version: {torch.version.cuda}")
        print(f"Current Device: {torch.cuda.current_device()}")
    
    # 清理 GPU 記憶體(如果可用)
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        
    device = get_device()

    with gr.Blocks(css=get_css_styles()) as iface:
        # Header HTML

        gr.HTML("""
        <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
            <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
                🐾 PawMatch AI
            </h1>
            <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
                Your Smart Dog Breed Guide
            </h2>
            <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
            <p style='color: #718096; font-size: 0.9em;'>
                Powered by AI • Breed Recognition • Smart Matching • Companion Guide
            </p>
        </header>
        """)

        # 先創建歷史組件實例(但不創建標籤頁)
        history_component = create_history_component()

        with gr.Tabs():
            # 1. 品種檢測標籤頁
            example_images = [
                'Border_Collie.jpg',
                'Golden_Retriever.jpeg',
                'Saint_Bernard.jpeg',
                'Samoyed.jpg',
                'French_Bulldog.jpeg'
            ]
            detection_components = create_detection_tab(predict, example_images)

            # 2. 品種比較標籤頁
            comparison_components = create_comparison_tab(
                dog_breeds=dog_breeds,
                get_dog_description=get_dog_description,
                breed_health_info=breed_health_info,
                breed_noise_info=breed_noise_info
            )

            # 3. 品種推薦標籤頁
            recommendation_components = create_recommendation_tab(
                UserPreferences=UserPreferences,
                get_breed_recommendations=get_breed_recommendations,
                format_recommendation_html=format_recommendation_html,
                history_component=history_component
            )


            # 4. 最後創建歷史記錄標籤頁
            create_history_tab(history_component)

        # Footer
        gr.HTML('''
            <div style="
                display: flex;
                align-items: center;
                justify-content: center;
                gap: 20px;
                padding: 20px 0;
            ">
                <p style="
                    font-family: 'Arial', sans-serif;
                    font-size: 14px;
                    font-weight: 500;
                    letter-spacing: 2px;
                    background: linear-gradient(90deg, #555, #007ACC);
                    -webkit-background-clip: text;
                    -webkit-text-fill-color: transparent;
                    margin: 0;
                    text-transform: uppercase;
                    display: inline-block;
                ">EXPLORE THE CODE →</p>
                <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
                </a>
            </div>
        ''')

    return iface

if __name__ == "__main__":
    print(f"CUDA available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
        print(f"Current device: {torch.cuda.current_device()}")
        print(f"Device name: {torch.cuda.get_device_name()}")
    iface = main()
    iface.launch()