File size: 28,481 Bytes
8ada85f
 
 
 
 
3d323ba
6526fb2
 
8ada85f
 
 
 
 
d96e417
5a18d30
bc5f7bd
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
d5c5f18
 
8ada85f
 
 
 
 
 
 
 
92ab6e7
c729302
a6e82f5
aae63de
8ada85f
 
3d323ba
8ada85f
 
3d323ba
8ada85f
 
3d323ba
8ada85f
 
 
 
 
3d323ba
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
3d323ba
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14ab04
8ada85f
aae63de
b14ab04
8ada85f
 
 
 
b14ab04
8ada85f
 
 
 
 
 
 
aae63de
 
8ada85f
b14ab04
8ada85f
 
 
 
 
c2d5142
 
 
413da2f
 
c2d5142
 
 
 
 
413da2f
c2d5142
 
 
 
 
 
 
 
 
413da2f
 
c2d5142
 
413da2f
 
 
 
 
 
 
 
 
 
c2d5142
 
 
 
 
 
 
0b3d14a
c2d5142
 
 
 
 
 
413da2f
c2d5142
 
413da2f
 
d428527
413da2f
 
 
 
 
 
 
c2d5142
 
 
413da2f
c2d5142
c729302
33adb14
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
c1fe297
60bd9a8
45473c9
aae63de
33adb14
 
 
 
 
aae63de
c729302
413da2f
11ab9ab
 
33adb14
c2d5142
11ab9ab
c22f0e1
33adb14
11ab9ab
 
 
a6e82f5
33adb14
 
11ab9ab
43bd720
33adb14
 
 
 
 
11ab9ab
c1fe297
d5c5f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60bd9a8
45473c9
d5c5f18
 
 
c729302
d5c5f18
 
 
 
 
 
 
 
c2d5142
 
 
11ab9ab
 
d5c5f18
 
11ab9ab
d5c5f18
 
11ab9ab
 
d5c5f18
11ab9ab
 
d5c5f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ada85f
03abe3f
 
 
 
 
 
 
 
 
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5f7bd
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b4434
c1fe297
d5c5f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45473c9
8ada85f
d5c5f18
 
 
8ada85f
d5c5f18
 
8ada85f
 
 
 
 
 
 
 
 
 
d5c5f18
45473c9
8ada85f
 
d5c5f18
8ada85f
 
 
 
 
 
 
 
 
 
d5c5f18
 
8ada85f
 
d5c5f18
8ada85f
d5c5f18
8ada85f
 
 
 
d5c5f18
8ada85f
 
 
 
 
 
 
 
 
 
3d323ba
d5c5f18
 
 
 
 
 
 
 
 
 
3d323ba
d5c5f18
3d323ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5c5f18
8ada85f
d5c5f18
8ada85f
 
d5c5f18
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d7a6
b14ab04
8ada85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14ab04
8ada85f
 
 
b14ab04
8ada85f
ca056ed
 
 
 
 
8ada85f
b14ab04
8ada85f
b14ab04
8ada85f
 
8849bf7
 
 
8ada85f
 
b14ab04
8ada85f
 
 
 
 
 
 
b14ab04
 
8ada85f
 
 
 
352d45a
 
 
 
bdadca6
352d45a
 
bdadca6
352d45a
 
 
bdadca6
 
 
 
 
 
 
 
 
cdc836d
bdadca6
0f56da4
8ada85f
 
 
 
 
 
88337e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
import traceback
import spaces
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
    format_description_html,
    format_single_dog_result,
    format_multiple_breeds_result,
    format_error_message,
    format_unknown_breed_message,
    format_not_dog_message,
    format_warning_html,
    format_multi_dog_container,
    format_breed_details_html,
    get_color_scheme,
    get_akc_breeds_link
)
from urllib.parse import quote
from ultralytics import YOLO
from functools import wraps


history_manager = UserHistoryManager()

dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
              "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
              "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
              "Wire-Haired_Fox_Terrier"]


class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


class ModelManager:
    """
    模型管理器:負責AI模型的初始化、設備管理和資源控制
    使用單例模式確保整個應用程序中只有一個實例
    """
    _instance = None
    _initialized = False
    _yolo_model = None
    _breed_model = None
    _device = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def __init__(self):
        # 避免重複初始化
        if not ModelManager._initialized:
            # 初始化設備,這會在第一次創建實例時執行
            self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            ModelManager._initialized = True
    
    @property
    def device(self):
        """
        提供對設備的訪問
        確保在需要時設備已經被初始化
        """
        if self._device is None:
            self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        return self._device

    @property
    def yolo_model(self):
        """
        延遲初始化YOLO模型
        只有在第一次使用時才會創建實例
        """
        if self._yolo_model is None:
            self._yolo_model = YOLO('yolov8x.pt')
        return self._yolo_model

    @property
    def breed_model(self):
        """
        延遲初始化品種分類模型
        只有在第一次使用時才會創建實例並移動到正確的設備上
        """
        if self._breed_model is None:
            self._breed_model = BaseModel(
                num_classes=len(dog_breeds), 
                device=self.device  
            ).to(self.device)
            
            checkpoint = torch.load(
                '124_best_model_dog.pth', 
                map_location=self.device  # 確保checkpoint加載到正確的設備
            )
            self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
            self._breed_model.eval()
        return self._breed_model


model_manager = ModelManager()
            

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)
    
@spaces.GPU
def predict_single_dog(image):
    """
    Predicts the dog breed using only the classifier.
    Args:
        image: PIL Image or numpy array
    Returns:
        tuple: (top1_prob, topk_breeds, relative_probs)
    """
    
    image_tensor = preprocess_image(image).to(model_manager.device)
    
    with torch.no_grad():
        # Get model outputs (只使用logits,不需要features)
        logits = model_manager.breed_model(image_tensor)[0]  # 如果model仍返回tuple,取第一個元素
        probs = F.softmax(logits, dim=1)
        
        # Classifier prediction
        top5_prob, top5_idx = torch.topk(probs, k=5)
        breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
        probabilities = [prob.item() for prob in top5_prob[0]]
        
        # Calculate relative probabilities
        sum_probs = sum(probabilities[:3])  # 只取前三個來計算相對概率
        relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
        
        # Debug output
        print("\nClassifier Predictions:")
        for breed, prob in zip(breeds[:5], probabilities[:5]):
            print(f"{breed}: {prob:.4f}")
            
        return probabilities[0], breeds[:3], relative_probs
        
# @spaces.GPU
# def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
    
#     results = model_manager.yolo_model(image, conf=conf_threshold, 
#                                      iou=iou_threshold)[0]
    
#     dogs = []
#     boxes = []
#     for box in results.boxes:
#         if box.cls == 16:  # COCO dataset class for dog is 16
#             xyxy = box.xyxy[0].tolist()
#             confidence = box.conf.item()
#             boxes.append((xyxy, confidence))

#     if not boxes:
#         dogs.append((image, 1.0, [0, 0, image.width, image.height]))
#     else:
#         nms_boxes = non_max_suppression(boxes, iou_threshold)

#         for box, confidence in nms_boxes:
#             x1, y1, x2, y2 = box
#             w, h = x2 - x1, y2 - y1
#             x1 = max(0, x1 - w * 0.05)
#             y1 = max(0, y1 - h * 0.05)
#             x2 = min(image.width, x2 + w * 0.05)
#             y2 = min(image.height, y2 + h * 0.05)
#             cropped_image = image.crop((x1, y1, x2, y2))
#             dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))

#     return dogs

@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
    """
    使用YOLO模型檢測圖片中的狗。
    只保留被識別為狗(class 16)的物體,並標記它們的狀態。
    
    Args:
        image: PIL Image
        conf_threshold: YOLO檢測的信心度閾值
        iou_threshold: 非極大值抑制的IoU閾值
    
    Returns:
        list: 包含檢測到的狗的列表,每個元素是(cropped_image, confidence, box, is_dog)的元組
    """
    results = model_manager.yolo_model(image, conf=conf_threshold, 
                                     iou=iou_threshold)[0]
    
    dogs = []
    boxes = []
    
    # 只處理被識別為狗的物體
    for box in results.boxes:
        class_id = box.cls.item()
        if class_id == 16:  # COCO dataset中狗的類別是16
            xyxy = box.xyxy[0].tolist()
            confidence = box.conf.item()
            boxes.append((xyxy, confidence, True))  # 加入is_dog標記

    if not boxes:
        # 如果沒有檢測到狗,返回整張圖片並標記為非狗
        return [(image, 1.0, [0, 0, image.width, image.height], False)]
    
    nms_boxes = non_max_suppression(boxes, iou_threshold)
    detected_objects = []

    # 處理每個檢測到的狗
    for box, confidence, is_dog in nms_boxes:
        x1, y1, x2, y2 = box
        w, h = x2 - x1, y2 - y1
        # 擴大檢測框範圍以包含完整的狗
        x1 = max(0, x1 - w * 0.05)
        y1 = max(0, y1 - h * 0.05)
        x2 = min(image.width, x2 + w * 0.05)
        y2 = min(image.height, y2 + h * 0.05)
        cropped_image = image.crop((x1, y1, x2, y2))
        detected_objects.append((cropped_image, confidence, [x1, y1, x2, y2], is_dog))

    return detected_objects

def non_max_suppression(boxes, iou_threshold):
    keep = []
    boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
    while boxes:
        current = boxes.pop(0)
        keep.append(current)
        boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
    return keep


def calculate_iou(box1, box2):
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])

    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

    iou = intersection / float(area1 + area2 - intersection)
    return iou



def create_breed_comparison(breed1: str, breed2: str) -> dict:
    breed1_info = get_dog_description(breed1)
    breed2_info = get_dog_description(breed2)

    # 標準化數值轉換
    value_mapping = {
        'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
        'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
        'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
        'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
    }

    comparison_data = {
        breed1: {},
        breed2: {}
    }

    for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
        comparison_data[breed] = {
            'Size': value_mapping['Size'].get(info['Size'], 2),  # 預設 Medium
            'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2),  # 預設 Moderate
            'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
            'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
            'Good_with_Children': info['Good with Children'] == 'Yes',
            'Original_Data': info
        }

    return comparison_data

    
# def predict(image):
#     """
#     Main prediction function that handles both single and multiple dog detection.

#     Args:
#         image: PIL Image or numpy array

#     Returns:
#         tuple: (html_output, annotated_image, initial_state)
#     """
    
#     if image is None:
#         return format_warning_html("Please upload an image to start."), None, None

#     try:
#         if isinstance(image, np.ndarray):
#             image = Image.fromarray(image)

#         # Detect dogs in the image
#         dogs = detect_multiple_dogs(image)
#         color_scheme = get_color_scheme(len(dogs) == 1)

#         # Prepare for annotation
#         annotated_image = image.copy()
#         draw = ImageDraw.Draw(annotated_image)

#         try:
#             font = ImageFont.truetype("arial.ttf", 24)
#         except:
#             font = ImageFont.load_default()

#         dogs_info = ""

#         # Process each detected dog
#         for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
#             color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]

#             # Draw box and label on image
#             draw.rectangle(box, outline=color, width=4)
#             label = f"Dog {i+1}"
#             label_bbox = draw.textbbox((0, 0), label, font=font)
#             label_width = label_bbox[2] - label_bbox[0]
#             label_height = label_bbox[3] - label_bbox[1]

#             # Draw label background and text
#             label_x = box[0] + 5
#             label_y = box[1] + 5
#             draw.rectangle(
#                 [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
#                 fill='white',
#                 outline=color,
#                 width=2
#             )
#             draw.text((label_x, label_y), label, fill=color, font=font)

#             # Predict breed
#             top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
#             combined_confidence = detection_confidence * top1_prob

#             # Format results based on confidence with error handling
#             try:
#                 if combined_confidence < 0.2:
#                     dogs_info += format_error_message(color, i+1)
#                 elif top1_prob >= 0.45:
#                     breed = topk_breeds[0]
#                     description = get_dog_description(breed)
#                     # Handle missing breed description
#                     if description is None:
#                         # 如果沒有描述,創建一個基本描述
#                         description = {
#                             "Name": breed,
#                             "Size": "Unknown",
#                             "Exercise Needs": "Unknown",
#                             "Grooming Needs": "Unknown",
#                             "Care Level": "Unknown",
#                             "Good with Children": "Unknown",
#                             "Description": f"Identified as {breed.replace('_', ' ')}"
#                         }
#                     dogs_info += format_single_dog_result(breed, description, color)
#                 else:
#                     # 修改format_multiple_breeds_result的調用,包含錯誤處理
#                     dogs_info += format_multiple_breeds_result(
#                         topk_breeds,
#                         relative_probs,
#                         color,
#                         i+1,
#                         lambda breed: get_dog_description(breed) or {
#                             "Name": breed,
#                             "Size": "Unknown",
#                             "Exercise Needs": "Unknown",
#                             "Grooming Needs": "Unknown",
#                             "Care Level": "Unknown",
#                             "Good with Children": "Unknown",
#                             "Description": f"Identified as {breed.replace('_', ' ')}"
#                         }
#                     )
#             except Exception as e:
#                 print(f"Error formatting results for dog {i+1}: {str(e)}")
#                 dogs_info += format_error_message(color, i+1)

#         # Wrap final HTML output
#         html_output = format_multi_dog_container(dogs_info)

#         # Prepare initial state
#         initial_state = {
#             "dogs_info": dogs_info,
#             "image": annotated_image,
#             "is_multi_dog": len(dogs) > 1,
#             "html_output": html_output
#         }

#         return html_output, annotated_image, initial_state

#     except Exception as e:
#         error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
#         print(error_msg)
#         return format_warning_html(error_msg), None, None


@spaces.GPU
def predict(image):
    """
    主要的預測函數,負責處理狗的檢測和品種辨識。
    它整合了YOLO的物體檢測和專門的品種分類模型。
    
    Args:
        image: PIL Image 或 numpy array
        
    Returns:
        tuple: (html_output, annotated_image, initial_state)
    """
    if image is None:
        return format_warning_html("Please upload an image to start."), None, None

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        # 檢測圖片中的狗
        dogs = detect_multiple_dogs(image)
        color_scheme = get_color_scheme(len(dogs) == 1)

        # 準備標註
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)

        try:
            font = ImageFont.truetype("arial.ttf", 24)
        except:
            font = ImageFont.load_default()

        dogs_info = ""

        # 處理每個檢測到的物體
        for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
            color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]

            # 繪製框和標籤
            draw.rectangle(box, outline=color, width=4)
            label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
            label_bbox = draw.textbbox((0, 0), label, font=font)
            label_width = label_bbox[2] - label_bbox[0]
            label_height = label_bbox[3] - label_bbox[1]

            # 繪製標籤背景和文字
            label_x = box[0] + 5
            label_y = box[1] + 5
            draw.rectangle(
                [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
                fill='white',
                outline=color,
                width=2
            )
            draw.text((label_x, label_y), label, fill=color, font=font)

            try:
                # 首先檢查是否為狗
                if not is_dog:
                    dogs_info += format_not_dog_message(color, i+1)
                    continue

                # 如果是狗,進行品種預測
                top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
                combined_confidence = detection_confidence * top1_prob

                # 根據信心度決定輸出格式
                if combined_confidence < 0.2:
                    dogs_info += format_unknown_breed_message(color, i+1)
                elif top1_prob >= 0.45:
                    breed = topk_breeds[0]
                    description = get_dog_description(breed)
                    if description is None:
                        description = {
                            "Name": breed,
                            "Size": "Unknown",
                            "Exercise Needs": "Unknown",
                            "Grooming Needs": "Unknown",
                            "Care Level": "Unknown",
                            "Good with Children": "Unknown",
                            "Description": f"Identified as {breed.replace('_', ' ')}"
                        }
                    dogs_info += format_single_dog_result(breed, description, color)
                else:
                    dogs_info += format_multiple_breeds_result(
                        topk_breeds,
                        relative_probs,
                        color,
                        i+1,
                        lambda breed: get_dog_description(breed) or {
                            "Name": breed,
                            "Size": "Unknown",
                            "Exercise Needs": "Unknown",
                            "Grooming Needs": "Unknown",
                            "Care Level": "Unknown",
                            "Good with Children": "Unknown",
                            "Description": f"Identified as {breed.replace('_', ' ')}"
                        }
                    )
            except Exception as e:
                print(f"Error formatting results for dog {i+1}: {str(e)}")
                dogs_info += format_unknown_breed_message(color, i+1)

        # 包裝最終的HTML輸出
        html_output = format_multi_dog_container(dogs_info)

        # 準備初始狀態
        initial_state = {
            "dogs_info": dogs_info,
            "image": annotated_image,
            "is_multi_dog": len(dogs) > 1,
            "html_output": html_output
        }

        return html_output, annotated_image, initial_state

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        print(error_msg)
        return format_warning_html(error_msg), None, None


def show_details_html(choice, previous_output, initial_state):
    """
    Generate detailed HTML view for a selected breed.

    Args:
        choice: str, Selected breed option
        previous_output: str, Previous HTML output
        initial_state: dict, Current state information

    Returns:
        tuple: (html_output, gradio_update, updated_state)
    """
    if not choice:
        return previous_output, gr.update(visible=True), initial_state

    try:
        breed = choice.split("More about ")[-1]
        description = get_dog_description(breed)
        html_output = format_breed_details_html(description, breed)

        # Update state
        initial_state["current_description"] = html_output
        initial_state["original_buttons"] = initial_state.get("buttons", [])

        return html_output, gr.update(visible=True), initial_state

    except Exception as e:
        error_msg = f"An error occurred while showing details: {e}"
        print(error_msg)
        return format_warning_html(error_msg), gr.update(visible=True), initial_state

def main():
    with gr.Blocks(css=get_css_styles()) as iface:

        gr.HTML("""
        <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
            <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
                🐾 PawMatch AI
            </h1>
            <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
                Your Smart Dog Breed Guide
            </h2>
            <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
            <p style='color: #718096; font-size: 0.9em;'>
                Powered by AI • Breed Recognition • Smart Matching • Companion Guide
            </p>
        </header>
        """)

        # 先創建歷史組件實例(但不創建標籤頁)
        history_component = create_history_component()

        with gr.Tabs():
            # 1. 品種檢測標籤頁
            example_images = [
                'Border_Collie.jpg',
                'Golden_Retriever.jpeg',
                'Saint_Bernard.jpeg',
                'Samoyed.jpg',
                'French_Bulldog.jpeg'
            ]
            detection_components = create_detection_tab(predict, example_images)

            # 2. 品種比較標籤頁
            comparison_components = create_comparison_tab(
                dog_breeds=dog_breeds,
                get_dog_description=get_dog_description,
                breed_health_info=breed_health_info,
                breed_noise_info=breed_noise_info
            )

            # 3. 品種推薦標籤頁
            recommendation_components = create_recommendation_tab(
                UserPreferences=UserPreferences,
                get_breed_recommendations=get_breed_recommendations,
                format_recommendation_html=format_recommendation_html,
                history_component=history_component
            )


            # 4. 最後創建歷史記錄標籤頁
            create_history_tab(history_component)

        # Footer
        gr.HTML('''
            <div style="
                display: flex;
                align-items: center;
                justify-content: center;
                gap: 20px;
                padding: 20px 0;
            ">
                <p style="
                    font-family: 'Arial', sans-serif;
                    font-size: 14px;
                    font-weight: 500;
                    letter-spacing: 2px;
                    background: linear-gradient(90deg, #555, #007ACC);
                    -webkit-background-clip: text;
                    -webkit-text-fill-color: transparent;
                    margin: 0;
                    text-transform: uppercase;
                    display: inline-block;
                ">EXPLORE THE CODE →</p>
                <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
                    <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
                </a>
            </div>
        ''')

    return iface

if __name__ == "__main__":
    iface = main()
    iface.launch()