Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import re | |
import numpy as np | |
import spaces | |
from typing import List, Dict, Tuple, Optional | |
from dataclasses import dataclass | |
from breed_health_info import breed_health_info | |
from breed_noise_info import breed_noise_info | |
from dog_database import dog_data | |
from scoring_calculation_system import UserPreferences | |
from sentence_transformers import SentenceTransformer, util | |
from functools import wraps | |
def gpu_init_wrapper(func): | |
def wrapper(*args, **kwargs): | |
return func(*args, **kwargs) | |
return wrapper | |
def safe_prediction(func): | |
"""錯誤處理裝飾器,提供 GPU 到 CPU 的降級機制""" | |
def wrapper(*args, **kwargs): | |
try: | |
return func(*args, **kwargs) | |
except RuntimeError as e: | |
if "CUDA" in str(e): | |
print("GPU 操作失敗,嘗試使用 CPU") | |
return func(*args, **kwargs) | |
raise | |
return wrapper | |
class SmartBreedMatcher: | |
def __init__(self, dog_data: List[Tuple]): | |
self.dog_data = dog_data | |
self.model = None | |
self._embedding_cache = {} | |
self._clear_cache() | |
def _initialize_model(self): | |
"""延遲初始化模型,只在需要時才創建""" | |
if self.model is None: | |
self.model = SentenceTransformer('all-mpnet-base-v2') | |
def _clear_cache(self): | |
self._embedding_cache = {} | |
def _get_cached_embedding(self, text: str) -> torch.Tensor: | |
"""使用 GPU 裝飾器確保在正確的時機初始化 CUDA""" | |
if self.model is None: | |
self._initialize_model() | |
if text not in self._embedding_cache: | |
self._embedding_cache[text] = self.model.encode(text) | |
return self._embedding_cache[text] | |
def _categorize_breeds(self) -> Dict: | |
"""自動將狗品種分類""" | |
categories = { | |
'working_dogs': [], | |
'herding_dogs': [], | |
'hunting_dogs': [], | |
'companion_dogs': [], | |
'guard_dogs': [] | |
} | |
for breed_info in self.dog_data: | |
description = breed_info[9].lower() | |
temperament = breed_info[4].lower() | |
# 根據描述和性格特徵自動分類 | |
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']): | |
categories['herding_dogs'].append(breed_info[1]) | |
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']): | |
categories['hunting_dogs'].append(breed_info[1]) | |
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']): | |
categories['companion_dogs'].append(breed_info[1]) | |
elif any(word in description for word in ['guard', 'protection', 'watchdog']): | |
categories['guard_dogs'].append(breed_info[1]) | |
elif any(word in description for word in ['working', 'draft', 'cart']): | |
categories['working_dogs'].append(breed_info[1]) | |
return categories | |
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]: | |
""" | |
找出與指定品種最相似的其他品種 | |
Args: | |
breed_name: 目標品種名稱 | |
top_n: 返回的相似品種數量 | |
Returns: | |
List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數 | |
""" | |
try: | |
if self.model is None: | |
self._initialize_model() | |
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None) | |
if not target_breed: | |
return [] | |
# 獲取完整的目標品種特徵 | |
target_features = { | |
'breed_name': target_breed[1], | |
'size': target_breed[2], | |
'temperament': target_breed[4], | |
'exercise': target_breed[7], | |
'grooming': target_breed[8], | |
'description': target_breed[9], | |
'good_with_children': target_breed[6] # 添加這個特徵 | |
} | |
similarities = [] | |
for breed in self.dog_data: | |
if breed[1] != breed_name: | |
breed_features = { | |
'breed_name': breed[1], | |
'size': breed[2], | |
'temperament': breed[4], | |
'exercise': breed[7], | |
'grooming': breed[8], | |
'description': breed[9], | |
'good_with_children': breed[6] # 添加這個特徵 | |
} | |
try: | |
similarity_score = self._calculate_breed_similarity(target_features, breed_features) | |
# 確保分數在有效範圍內 | |
similarity_score = min(1.0, max(0.0, similarity_score)) | |
similarities.append((breed[1], similarity_score)) | |
except Exception as e: | |
print(f"Error calculating similarity for {breed[1]}: {str(e)}") | |
continue | |
# 根據相似度排序並返回前N個 | |
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n] | |
except Exception as e: | |
print(f"Error in find_similar_breeds: {str(e)}") | |
return [] | |
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float: | |
try: | |
# 1. 基礎相似度計算 | |
size_similarity = self._calculate_size_similarity_enhanced( | |
breed1_features.get('size', 'Medium'), | |
breed2_features.get('size', 'Medium'), | |
breed2_features.get('description', '') | |
) | |
exercise_similarity = self._calculate_exercise_similarity_enhanced( | |
breed1_features.get('exercise', 'Moderate'), | |
breed2_features.get('exercise', 'Moderate') | |
) | |
# 性格相似度 | |
temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', '')) | |
temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', '')) | |
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding)) | |
# 其他相似度 | |
grooming_similarity = self._calculate_grooming_similarity( | |
breed1_features.get('breed_name', ''), | |
breed2_features.get('breed_name', '') | |
) | |
health_similarity = self._calculate_health_score_similarity( | |
breed1_features.get('breed_name', ''), | |
breed2_features.get('breed_name', '') | |
) | |
noise_similarity = self._calculate_noise_similarity( | |
breed1_features.get('breed_name', ''), | |
breed2_features.get('breed_name', '') | |
) | |
# 2. 關鍵特徵評分 | |
feature_scores = {} | |
for feature, similarity in { | |
'size': size_similarity, | |
'exercise': exercise_similarity, | |
'temperament': temperament_similarity, | |
'grooming': grooming_similarity, | |
'health': health_similarity, | |
'noise': noise_similarity | |
}.items(): | |
# 根據權重調整每個特徵分數 | |
importance = weights.get(feature, 0.1) | |
if importance > 0.3: # 高權重特徵 | |
if similarity < 0.5: # 若關鍵特徵匹配度低 | |
feature_scores[feature] = similarity * 0.5 # 大幅降低分數 | |
else: | |
feature_scores[feature] = similarity * 1.2 # 提高匹配度好的分數 | |
else: # 一般特徵 | |
feature_scores[feature] = similarity | |
# 3. 計算最終相似度 | |
weighted_sum = 0 | |
weight_sum = 0 | |
for feature, score in feature_scores.items(): | |
feature_weight = weights.get(feature, 0.1) | |
weighted_sum += score * feature_weight | |
weight_sum += feature_weight | |
final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5 | |
return min(1.0, max(0.2, final_similarity)) # 設定最低分數為0.2 | |
except Exception as e: | |
print(f"Error in calculate_breed_similarity: {str(e)}") | |
return 0.5 | |
def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float: | |
score = 1.0 | |
description_lower = description.lower() | |
breed_score_multipliers = [] | |
# 運動需求評估 | |
exercise_needs = breed_features.get('exercise', 'Moderate') | |
exercise_keywords = ['active', 'running', 'energetic', 'athletic'] | |
if any(keyword in description_lower for keyword in exercise_keywords): | |
multipliers = { | |
'Very High': 1.5, | |
'High': 1.3, | |
'Moderate': 0.7, | |
'Low': 0.4 | |
} | |
breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0)) | |
# 體型評估 | |
size = breed_features.get('size', 'Medium') | |
if 'apartment' in description_lower: | |
size_multipliers = { | |
'Giant': 0.3, | |
'Large': 0.6, | |
'Medium-Large': 0.8, | |
'Medium': 1.4, | |
'Small': 1.0, | |
'Tiny': 0.9 | |
} | |
breed_score_multipliers.append(size_multipliers.get(size, 1.0)) | |
elif 'house' in description_lower: | |
size_multipliers = { | |
'Giant': 0.8, | |
'Large': 1.2, | |
'Medium-Large': 1.3, | |
'Medium': 1.2, | |
'Small': 0.9, | |
'Tiny': 0.7 | |
} | |
breed_score_multipliers.append(size_multipliers.get(size, 1.0)) | |
# 家庭適應性評估 | |
if any(keyword in description_lower for keyword in ['family', 'children', 'kids']): | |
good_with_children = breed_features.get('good_with_children', False) | |
breed_score_multipliers.append(1.3 if good_with_children else 0.6) | |
# 噪音評估 | |
if 'quiet' in description_lower: | |
noise_level = breed_features.get('noise_level', 'Moderate') | |
noise_multipliers = { | |
'Low': 1.3, | |
'Moderate': 0.9, | |
'High': 0.5 | |
} | |
breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0)) | |
# 應用所有乘數 | |
for multiplier in breed_score_multipliers: | |
score *= multiplier | |
# 確保分數在合理範圍內 | |
return min(1.5, max(0.3, score)) | |
def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float: | |
""" | |
增強版尺寸相似度計算 | |
""" | |
try: | |
# 更細緻的尺寸映射 | |
size_map = { | |
'Tiny': 0, | |
'Small': 1, | |
'Small-Medium': 2, | |
'Medium': 3, | |
'Medium-Large': 4, | |
'Large': 5, | |
'Giant': 6 | |
} | |
# 標準化並獲取數值 | |
value1 = size_map.get(self._normalize_size(size1), 3) | |
value2 = size_map.get(self._normalize_size(size2), 3) | |
# 基礎相似度計算 | |
base_similarity = 1.0 - (abs(value1 - value2) / 6.0) | |
# 環境適應性調整 | |
if 'apartment' in description.lower(): | |
if size2 in ['Large', 'Giant']: | |
base_similarity *= 0.7 # 大型犬在公寓降低相似度 | |
elif size2 in ['Medium', 'Medium-Large']: | |
base_similarity *= 1.2 # 中型犬更適合 | |
elif size2 in ['Small', 'Tiny']: | |
base_similarity *= 0.8 # 過小的狗也不是最佳選擇 | |
return min(1.0, base_similarity) | |
except Exception as e: | |
print(f"Error in calculate_size_similarity_enhanced: {str(e)}") | |
return 0.5 | |
def _normalize_size(self, size: str) -> str: | |
""" | |
標準化犬種尺寸分類 | |
Args: | |
size: 原始尺寸描述 | |
Returns: | |
str: 標準化後的尺寸類別 | |
""" | |
try: | |
size = size.lower() | |
if 'tiny' in size: | |
return 'Tiny' | |
elif 'small' in size and 'medium' in size: | |
return 'Small-Medium' | |
elif 'small' in size: | |
return 'Small' | |
elif 'medium' in size and 'large' in size: | |
return 'Medium-Large' | |
elif 'medium' in size: | |
return 'Medium' | |
elif 'giant' in size: | |
return 'Giant' | |
elif 'large' in size: | |
return 'Large' | |
return 'Medium' # 默認為 Medium | |
except Exception as e: | |
print(f"Error in normalize_size: {str(e)}") | |
return 'Medium' | |
def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float: | |
try: | |
exercise_values = { | |
'Very High': 4, | |
'High': 3, | |
'Moderate': 2, | |
'Low': 1 | |
} | |
value1 = exercise_values.get(exercise1, 2) | |
value2 = exercise_values.get(exercise2, 2) | |
# 計算差異 | |
diff = abs(value1 - value2) | |
if diff == 0: | |
return 1.0 | |
elif diff == 1: | |
return 0.7 | |
elif diff == 2: | |
return 0.4 | |
else: | |
return 0.2 | |
except Exception as e: | |
print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}") | |
return 0.5 | |
def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float: | |
""" | |
計算美容需求相似度 | |
Args: | |
breed1: 第一個品種名稱 | |
breed2: 第二個品種名稱 | |
Returns: | |
float: 相似度分數 (0-1) | |
""" | |
try: | |
grooming_map = { | |
'Low': 1, | |
'Moderate': 2, | |
'High': 3 | |
} | |
# 從dog_data中獲取美容需求 | |
breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None) | |
breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None) | |
if not breed1_info or not breed2_info: | |
return 0.5 # 數據缺失時返回中等相似度 | |
grooming1 = breed1_info[8] # Grooming_Needs index | |
grooming2 = breed2_info[8] | |
# 獲取數值,默認為 Moderate | |
value1 = grooming_map.get(grooming1, 2) | |
value2 = grooming_map.get(grooming2, 2) | |
# 基礎相似度計算 | |
base_similarity = 1.0 - (abs(value1 - value2) / 2.0) | |
# 美容需求調整 | |
if grooming2 == 'Moderate': | |
base_similarity *= 1.1 # 中等美容需求略微加分 | |
elif grooming2 == 'High': | |
base_similarity *= 0.9 # 高美容需求略微降分 | |
return min(1.0, base_similarity) | |
except Exception as e: | |
print(f"Error in calculate_grooming_similarity: {str(e)}") | |
return 0.5 | |
def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float: | |
""" | |
計算兩個品種的健康評分相似度 | |
""" | |
try: | |
score1 = self._calculate_health_score(breed1) | |
score2 = self._calculate_health_score(breed2) | |
return 1.0 - abs(score1 - score2) | |
except Exception as e: | |
print(f"Error in calculate_health_score_similarity: {str(e)}") | |
return 0.5 | |
def _calculate_health_score(self, breed_name: str) -> float: | |
""" | |
計算品種的健康評分 | |
Args: | |
breed_name: 品種名稱 | |
Returns: | |
float: 健康評分 (0-1) | |
""" | |
try: | |
if breed_name not in breed_health_info: | |
return 0.5 | |
health_notes = breed_health_info[breed_name]['health_notes'].lower() | |
# 嚴重健康問題 | |
severe_conditions = [ | |
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia', | |
'bloat', 'progressive', 'syndrome' | |
] | |
# 中等健康問題 | |
moderate_conditions = [ | |
'allergies', 'infections', 'thyroid', 'luxation', | |
'skin problems', 'ear' | |
] | |
# 計算問題數量 | |
severe_count = sum(1 for condition in severe_conditions if condition in health_notes) | |
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes) | |
# 基礎健康評分 | |
health_score = 1.0 | |
health_score -= (severe_count * 0.15) # 嚴重問題扣分更多 | |
health_score -= (moderate_count * 0.05) # 中等問題扣分較少 | |
# 確保評分在合理範圍內 | |
return max(0.3, min(1.0, health_score)) | |
except Exception as e: | |
print(f"Error in calculate_health_score: {str(e)}") | |
return 0.5 | |
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float: | |
"""計算兩個品種的噪音相似度""" | |
noise_levels = { | |
'Low': 1, | |
'Moderate': 2, | |
'High': 3, | |
'Unknown': 2 # 默認為中等 | |
} | |
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown') | |
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown') | |
# 獲取數值級別 | |
level1 = noise_levels.get(noise1, 2) | |
level2 = noise_levels.get(noise2, 2) | |
# 計算差異並歸一化 | |
difference = abs(level1 - level2) | |
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化 | |
return similarity | |
# bonus score zone | |
def _calculate_size_bonus(self, size: str, living_space: str) -> float: | |
""" | |
計算尺寸匹配的獎勵分數 | |
Args: | |
size: 品種尺寸 | |
living_space: 居住空間類型 | |
Returns: | |
float: 獎勵分數 (-0.25 到 0.15) | |
""" | |
try: | |
if living_space == "apartment": | |
size_scores = { | |
'Tiny': -0.15, | |
'Small': 0.10, | |
'Medium': 0.15, | |
'Large': 0.10, | |
'Giant': -0.30 | |
} | |
else: # house | |
size_scores = { | |
'Tiny': -0.10, | |
'Small': 0.05, | |
'Medium': 0.15, | |
'Large': 0.15, | |
'Giant': -0.15 | |
} | |
return size_scores.get(size, 0.0) | |
except Exception as e: | |
print(f"Error in calculate_size_bonus: {str(e)}") | |
return 0.0 | |
def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float: | |
""" | |
計算運動需求匹配的獎勵分數 | |
Args: | |
exercise_needs: 品種運動需求 | |
exercise_time: 用戶可提供的運動時間(分鐘) | |
Returns: | |
float: 獎勵分數 (-0.20 到 0.20) | |
""" | |
try: | |
if exercise_time >= 120: # 高運動量需求 | |
exercise_scores = { | |
'Low': -0.30, | |
'Moderate': -0.10, | |
'High': 0.15, | |
'Very High': 0.30 | |
} | |
elif exercise_time >= 60: # 中等運動量需求 | |
exercise_scores = { | |
'Low': -0.05, | |
'Moderate': 0.15, | |
'High': 0.05, | |
'Very High': -0.10 | |
} | |
else: # 低運動量需求 | |
exercise_scores = { | |
'Low': 0.15, | |
'Moderate': 0.05, | |
'High': -0.15, | |
'Very High': -0.20 | |
} | |
return exercise_scores.get(exercise_needs, 0.0) | |
except Exception as e: | |
print(f"Error in calculate_exercise_bonus: {str(e)}") | |
return 0.0 | |
def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float: | |
""" | |
計算美容需求匹配的獎勵分數 | |
Args: | |
grooming: 品種美容需求 | |
commitment: 用戶美容投入程度 | |
Returns: | |
float: 獎勵分數 (-0.15 到 0.10) | |
""" | |
try: | |
if commitment == "high": | |
grooming_scores = { | |
'Low': -0.05, | |
'Moderate': 0.05, | |
'High': 0.10 | |
} | |
else: # medium or low commitment | |
grooming_scores = { | |
'Low': 0.10, | |
'Moderate': 0.05, | |
'High': -0.20 | |
} | |
return grooming_scores.get(grooming, 0.0) | |
except Exception as e: | |
print(f"Error in calculate_grooming_bonus: {str(e)}") | |
return 0.0 | |
def _calculate_family_bonus(self, breed_info: Dict) -> float: | |
""" | |
計算家庭適應性的獎勵分數 | |
Args: | |
breed_info: 品種信息字典 | |
Returns: | |
float: 獎勵分數 (0 到 0.20) | |
""" | |
try: | |
bonus = 0.0 | |
temperament = breed_info.get('Temperament', '').lower() | |
good_with_children = breed_info.get('Good_With_Children', False) | |
if good_with_children: | |
bonus += 0.20 | |
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']): | |
bonus += 0.10 | |
return min(0.20, bonus) | |
except Exception as e: | |
print(f"Error in calculate_family_bonus: {str(e)}") | |
return 0.0 | |
def _detect_scenario(self, description: str) -> Dict[str, float]: | |
""" | |
檢測場景並返回對應權重 | |
""" | |
# 基礎場景定義 | |
scenarios = { | |
'athletic': { | |
'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'], | |
'weights': { | |
'exercise': 0.40, | |
'size': 0.25, | |
'temperament': 0.20, | |
'health': 0.15 | |
} | |
}, | |
'apartment': { | |
'keywords': ['apartment', 'flat', 'condo'], | |
'weights': { | |
'size': 0.35, | |
'noise': 0.30, | |
'exercise': 0.20, | |
'temperament': 0.15 | |
} | |
}, | |
'family': { | |
'keywords': ['family', 'children', 'kids', 'friendly'], | |
'weights': { | |
'temperament': 0.35, | |
'safety': 0.30, | |
'noise': 0.20, | |
'exercise': 0.15 | |
} | |
}, | |
'novice': { | |
'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'], | |
'weights': { | |
'trainability': 0.35, | |
'temperament': 0.30, | |
'care_level': 0.20, | |
'health': 0.15 | |
} | |
} | |
} | |
# 檢測匹配的場景 | |
matched_scenarios = [] | |
for scenario, config in scenarios.items(): | |
if any(keyword in description.lower() for keyword in config['keywords']): | |
matched_scenarios.append(scenario) | |
# 默認權重 | |
default_weights = { | |
'exercise': 0.20, | |
'size': 0.20, | |
'temperament': 0.20, | |
'health': 0.15, | |
'noise': 0.10, | |
'grooming': 0.10, | |
'trainability': 0.05 | |
} | |
# 如果沒有匹配場景,返回默認權重 | |
if not matched_scenarios: | |
return default_weights | |
# 合併匹配場景的權重 | |
final_weights = default_weights.copy() | |
for scenario in matched_scenarios: | |
scenario_weights = scenarios[scenario]['weights'] | |
for feature, weight in scenario_weights.items(): | |
if feature in final_weights: | |
final_weights[feature] = max(final_weights[feature], weight) | |
return final_weights | |
def _calculate_final_scores(self, breed_name: str, base_scores: Dict, | |
smart_score: float, is_preferred: bool, | |
similarity_score: float = 0.0, | |
characteristics_score: float = 1.0, | |
weights: Dict[str, float] = None) -> Dict: | |
try: | |
# 使用傳入的權重或默認權重 | |
if weights is None: | |
weights = { | |
'base': 0.35, | |
'smart': 0.35, | |
'bonus': 0.15, | |
'characteristics': 0.15 | |
} | |
# 確保 base_scores 包含所有必要的鍵 | |
base_scores = { | |
'overall': base_scores.get('overall', smart_score), | |
'size': base_scores.get('size', 0.0), | |
'exercise': base_scores.get('exercise', 0.0), | |
'temperament': base_scores.get('temperament', 0.0), | |
'grooming': base_scores.get('grooming', 0.0), | |
'health': base_scores.get('health', 0.0), | |
'noise': base_scores.get('noise', 0.0) | |
} | |
# 計算基礎分數 | |
base_score = base_scores['overall'] | |
# 計算獎勵分數 | |
bonus_score = 0.0 | |
if is_preferred: | |
bonus_score = 0.95 | |
elif similarity_score > 0: | |
bonus_score = min(0.8, similarity_score) * 0.95 | |
# 特徵匹配度調整 | |
if characteristics_score < 0.5: | |
base_score *= 0.7 # 降低基礎分數 | |
smart_score *= 0.7 # 降低智能匹配分數 | |
# 計算最終分數 | |
final_score = ( | |
base_score * weights.get('base', 0.35) + | |
smart_score * weights.get('smart', 0.35) + | |
bonus_score * weights.get('bonus', 0.15) + | |
characteristics_score * weights.get('characteristics', 0.15) | |
) | |
# 確保分數在合理範圍內 | |
final_score = min(1.0, max(0.3, final_score)) | |
return { | |
'final_score': round(final_score, 4), | |
'base_score': round(base_score, 4), | |
'smart_score': round(smart_score, 4), | |
'bonus_score': round(bonus_score, 4), | |
'characteristics_score': round(characteristics_score, 4), | |
'detailed_scores': base_scores | |
} | |
except Exception as e: | |
print(f"Error in calculate_final_scores: {str(e)}") | |
return { | |
'final_score': 0.5, | |
'base_score': 0.5, | |
'smart_score': 0.5, | |
'bonus_score': 0.0, | |
'characteristics_score': 0.5, | |
'detailed_scores': { | |
'overall': 0.5, | |
'size': 0.5, | |
'exercise': 0.5, | |
'temperament': 0.5, | |
'grooming': 0.5, | |
'health': 0.5, | |
'noise': 0.5 | |
} | |
} | |
def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]: | |
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素""" | |
try: | |
matches = [] | |
desc_embedding = self._get_cached_embedding(description) | |
for breed in self.dog_data: | |
breed_name = breed[1] | |
breed_features = self._extract_breed_features(breed) | |
breed_description = breed[9] | |
temperament = breed[4] | |
breed_desc_embedding = self._get_cached_embedding(breed_description) | |
breed_temp_embedding = self._get_cached_embedding(temperament) | |
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding)) | |
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding)) | |
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name) | |
health_score = self._calculate_health_score(breed_name) | |
health_similarity = 1.0 - abs(health_score - 0.8) | |
# 使用傳入的權重 | |
final_score = ( | |
desc_similarity * weights.get('description', 0.35) + | |
temp_similarity * weights.get('temperament', 0.25) + | |
noise_similarity * weights.get('noise', 0.2) + | |
health_similarity * weights.get('health', 0.2) | |
) | |
# 計算特徵分數 | |
characteristics_score = self.get_breed_characteristics_score(breed_features, description) | |
# 構建完整的 scores 字典 | |
scores = { | |
'overall': final_score, | |
'size': breed_features.get('size_score', 0.0), | |
'exercise': breed_features.get('exercise_score', 0.0), | |
'temperament': temp_similarity, | |
'grooming': breed_features.get('grooming_score', 0.0), | |
'health': health_score, | |
'noise': noise_similarity | |
} | |
matches.append({ | |
'breed': breed_name, | |
'scores': scores, | |
'final_score': final_score, | |
'base_score': final_score, | |
'characteristics_score': characteristics_score, | |
'bonus_score': 0.0, | |
'is_preferred': False, | |
'similarity': final_score, | |
'health_score': health_score, | |
'reason': "Matched based on description and characteristics" | |
}) | |
return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n] | |
except Exception as e: | |
print(f"Error in _general_matching: {str(e)}") | |
return [] | |
def _detect_breed_preference(self, description: str) -> Optional[str]: | |
"""檢測用戶是否提到特定品種""" | |
description_lower = f" {description.lower()} " | |
for breed_info in self.dog_data: | |
breed_name = breed_info[1] | |
normalized_breed = breed_name.lower().replace('_', ' ') | |
pattern = rf"\b{re.escape(normalized_breed)}\b" | |
if re.search(pattern, description_lower): | |
return breed_name | |
return None | |
def _extract_breed_features(self, breed_info: Tuple) -> Dict: | |
""" | |
從品種信息中提取特徵 | |
Args: | |
breed_info: 品種信息元組 | |
Returns: | |
Dict: 包含品種特徵的字典 | |
""" | |
try: | |
return { | |
'breed_name': breed_info[1], | |
'size': breed_info[2], | |
'temperament': breed_info[4], | |
'exercise': breed_info[7], | |
'grooming': breed_info[8], | |
'description': breed_info[9], | |
'good_with_children': breed_info[6] | |
} | |
except Exception as e: | |
print(f"Error in extract_breed_features: {str(e)}") | |
return { | |
'breed_name': '', | |
'size': 'Medium', | |
'temperament': '', | |
'exercise': 'Moderate', | |
'grooming': 'Moderate', | |
'description': '', | |
'good_with_children': False | |
} | |
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]: | |
try: | |
if self.model is None: | |
self._initialize_model() | |
# 獲取場景權重 | |
weights = self._detect_scenario(description) | |
matches = [] | |
preferred_breed = self._detect_breed_preference(description) | |
# 處理用戶明確提到的品種 | |
if preferred_breed: | |
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None) | |
if breed_info: | |
breed_features = self._extract_breed_features(breed_info) | |
base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights) | |
# 計算特徵分數 | |
characteristics_score = self.get_breed_characteristics_score(breed_features, description) | |
# 計算最終分數 | |
scores = self._calculate_final_scores( | |
preferred_breed, | |
{'overall': base_similarity}, | |
smart_score=base_similarity, | |
is_preferred=True, | |
similarity_score=1.0, | |
characteristics_score=characteristics_score, | |
weights=weights | |
) | |
matches.append({ | |
'breed': preferred_breed, | |
'scores': scores['detailed_scores'], | |
'final_score': scores['final_score'], | |
'base_score': scores['base_score'], | |
'bonus_score': scores['bonus_score'], | |
'characteristics_score': characteristics_score, | |
'is_preferred': True, | |
'priority': 1, | |
'health_score': self._calculate_health_score(preferred_breed), | |
'reason': "Directly matched your preferred breed" | |
}) | |
# 尋找相似品種 | |
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1) | |
for breed_name, similarity in similar_breeds: | |
if breed_name != preferred_breed: | |
breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None) | |
if breed_info: | |
breed_features = self._extract_breed_features(breed_info) | |
characteristics_score = self.get_breed_characteristics_score(breed_features, description) | |
scores = self._calculate_final_scores( | |
breed_name, | |
{'overall': similarity}, | |
smart_score=similarity, | |
is_preferred=False, | |
similarity_score=similarity, | |
characteristics_score=characteristics_score, | |
weights=weights | |
) | |
if scores['final_score'] >= 0.4: # 設定最低分數門檻 | |
matches.append({ | |
'breed': breed_name, | |
'scores': scores['detailed_scores'], | |
'final_score': scores['final_score'], | |
'base_score': scores['base_score'], | |
'bonus_score': scores['bonus_score'], | |
'characteristics_score': characteristics_score, | |
'is_preferred': False, | |
'priority': 2, | |
'health_score': self._calculate_health_score(breed_name), | |
'reason': f"Similar to {preferred_breed}" | |
}) | |
# 如果沒有找到偏好品種或需要更多匹配 | |
if len(matches) < top_n: | |
general_matches = self._general_matching(description, weights, top_n - len(matches)) | |
for match in general_matches: | |
if match['breed'] not in [m['breed'] for m in matches]: | |
match['priority'] = 3 | |
if match['final_score'] >= 0.4: # 分數門檻 | |
matches.append(match) | |
# 最終排序 | |
matches.sort(key=lambda x: ( | |
-x.get('characteristics_score', 0), # 首先考慮特徵匹配度 | |
-x.get('final_score', 0), # 然後是總分 | |
-x.get('base_score', 0), # 最後是基礎分數 | |
x.get('breed', '') # 字母順序 | |
)) | |
# 取前N個結果 | |
final_matches = matches[:top_n] | |
# 更新排名 | |
for i, match in enumerate(final_matches, 1): | |
match['rank'] = i | |
return final_matches | |
except Exception as e: | |
print(f"Error in match_user_preference: {str(e)}") | |
return [] | |