File size: 8,065 Bytes
85330fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download, snapshot_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
import os

# Model paths
model_paths = {
    "Realistic Vision V4.0": "SG161222/Realistic_Vision_V4.0_noVAE",
    "Pony Realism v21": snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl"),
    "Cyber Realistic Pony v61": snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl"),
    "Stallion Dreams Pony Realistic v1": snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")
}
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")

# Safety Checker Setup
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)

device = "cuda"

# Define the scheduler
noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)

# Face analysis setup
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

cv2.setNumThreads(1)

# Function to load the appropriate pipeline based on user selection
def load_model(model_choice):
    model_path = model_paths[model_choice]
    pipeline = StableDiffusionPipeline.from_pretrained(
        model_path,
        torch_dtype=torch.float16,
        scheduler=noise_scheduler,
        vae=vae,
        feature_extractor=safety_feature_extractor,
        safety_checker=None
    ).to(device)

    # Load the IP Adapter models
    ip_model = IPAdapterFaceID(pipeline, ip_ckpt, device)
    ip_model_plus = IPAdapterFaceIDPlus(pipeline, image_encoder_path, ip_plus_ckpt, device)

    return pipeline, ip_model, ip_model_plus

# Gradio function to generate images
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, model_choice, progress=gr.Progress(track_tqdm=True)):
    pipeline, ip_model, ip_model_plus = load_model(model_choice)
    faceid_all_embeds = []
    first_iteration = True
    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)
        if first_iteration and preserve_face_structure:
            face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
            first_iteration = False

    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
    total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"

    if not preserve_face_structure:
        image = ip_model.generate(
            prompt=prompt,
            negative_prompt=total_negative_prompt,
            faceid_embeds=average_embedding,
            scale=likeness_strength,
            width=512,
            height=512,
            num_inference_steps=30
        )
    else:
        image = ip_model_plus.generate(
            prompt=prompt,
            negative_prompt=total_negative_prompt,
            faceid_embeds=average_embedding,
            scale=likeness_strength,
            face_image=face_image,
            shortcut=True,
            s_scale=face_strength,
            width=512,
            height=512,
            num_inference_steps=30
        )
    return image

def change_style(style):
    if style == "Photorealistic":
        return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)
    else:
        return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)

css = '''
h1{margin-bottom: 0 !important}
footer{display:none !important}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("")
    gr.Markdown("")
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                label="Drag 1 or more photos of your face",
                file_types=["image"]
            )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(
                label="Prompt",
                info="Try something like 'a photo of a man/woman/person'",
                placeholder="A photo of a [man/woman/person]..."
            )
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
            style = gr.Radio(
                label="Generation type",
                info="For stylized try prompts like 'a watercolor painting of a woman'",
                choices=["Photorealistic", "Stylized"],
                value="Photorealistic"
            )
            model_choice = gr.Dropdown(
                label="Model Choice",
                choices=list(model_paths.keys()),
                value="Realistic Vision V4.0"
            )
            submit = gr.Button("Submit")
            with gr.Accordion(open=False, label="Advanced Options"):
                preserve = gr.Checkbox(
                    label="Preserve Face Structure",
                    info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.",
                    value=True
                )
                face_strength = gr.Slider(
                    label="Face Structure strength",
                    info="Only applied if preserve face structure is checked",
                    value=1.3,
                    step=0.1,
                    minimum=0,
                    maximum=3
                )
                likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
                nfaa_negative_prompts = gr.Textbox(
                    label="Appended Negative Prompts",
                    info="Negative prompts to steer generations towards safe for all audiences outputs",
                    value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through"
                )
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
        style.change(fn=change_style,
                     inputs=style,
                     outputs=[preserve, face_strength, likeness_strength])
        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        submit.click(
            fn=generate_image,
            inputs=[files, prompt, negative_prompt, preserve, face_strength, likeness_strength, nfaa_negative_prompts, model_choice],
            outputs=gallery
        )
    
    gr.Markdown("")

demo.launch()