Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,893 Bytes
8d02f67 85330fa aa14900 02269e1 85330fa aa14900 5dc51ba cf9fa34 aa14900 cf9fa34 aa14900 cf9fa34 aa14900 cf9fa34 aa14900 cf9fa34 aa14900 85330fa aa14900 85330fa 02269e1 aa14900 5dc51ba aa14900 a60d15c aa14900 85330fa aa14900 85330fa aa14900 85330fa aa14900 5dc51ba 85330fa aa14900 85330fa cf9fa34 aa14900 cf9fa34 aa14900 85330fa 5dc51ba 85330fa 5dc51ba 85330fa aa14900 85330fa aa14900 cf9fa34 aa14900 85330fa aa14900 85330fa aa14900 7f4b639 aa14900 85330fa aa14900 85330fa aa14900 02269e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch
import spaces
from diffusers import DDIMScheduler, StableDiffusionXLPipeline
import ipown
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
import gradio as gr
import cv2
# List of models for switching
model_options = {
"CyberRealistic": "John6666/cyberrealistic-pony-v61-sdxl",
"StallionDreams": "John6666/stallion-dreams-pony-realistic-v1-sdxl",
"PonyRealism": "John6666/pony-realism-v21main-sdxl"
}
# Full style list for applying styles to the prompt
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
]
# Styles dictionary to map style names to prompts and negative prompts
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
# Function to apply the selected style
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
# Download the necessary model component
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
device = "cuda"
# Configure the noise scheduler
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
# Function to initialize the pipeline with a selected model
def get_pipeline(model_path):
return StableDiffusionXLPipeline.from_pretrained(
model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
use_safetensors=True,
)
# Initialize with a default model
current_model = model_options["PonyRealism"]
pipe = get_pipeline(current_model)
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
@spaces.GPU()
def generate_image(images, model_choice, style_name, prompt, negative_prompt, face_strength, likeness_strength, num_inference_steps, guidance_scale, width, height):
global current_model, pipe, ip_model
# Update the model if the choice has changed
if model_options[model_choice] != current_model:
current_model = model_options[model_choice]
pipe = get_pipeline(current_model)
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device)
torch.cuda.empty_cache()
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(512, 512))
faceid_all_embeds = []
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
# Apply the selected style
styled_prompt, styled_negative_prompt = apply_style(style_name, prompt, negative_prompt)
image = ip_model.generate(
prompt=styled_prompt, negative_prompt=styled_negative_prompt, faceid_embeds=average_embedding,
scale=likeness_strength, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps
)
return image
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# IP-Adapter-FaceID SDXL demo")
gr.Markdown("A simple Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID).")
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(label="Select Model", choices=list(model_options.keys()), value="PonyRealism")
style_dropdown = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
files = gr.Files(label="Drag 1 or more photos of your face", file_types=["image"])
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt", placeholder="A photo of a man/woman/person ...")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
face_strength = gr.Slider(label="Face Strength", value=7.5, step=0.1, minimum=0, maximum=15)
likeness_strength = gr.Slider(label="Likeness Strength", value=1.0, step=0.1, minimum=0, maximum=5)
with gr.Accordion("Advanced Options", open=False):
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100)
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20)
width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024)
height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024)
submit = gr.Button("Submit", variant="primary")
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(fn=generate_image, inputs=[files, model_dropdown, style_dropdown, prompt, negative_prompt, face_strength, likeness_strength, num_inference_steps, guidance_scale, width, height], outputs=gallery)
demo.launch() |