Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from diffusers import DDIMScheduler, StableDiffusionXLPipeline | |
import ipown | |
from huggingface_hub import hf_hub_download | |
from insightface.app import FaceAnalysis | |
import gradio as gr | |
import cv2 | |
# List of models for switching | |
model_options = { | |
"CyberRealistic": "John6666/cyberrealistic-pony-v61-sdxl", | |
"StallionDreams": "John6666/stallion-dreams-pony-realistic-v1-sdxl", | |
"PonyRealism": "John6666/pony-realism-v21main-sdxl" | |
} | |
# Full style list for applying styles to the prompt | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
] | |
# Styles dictionary to map style names to prompts and negative prompts | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
# Function to apply the selected style | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + negative | |
# Download the necessary model component | |
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model") | |
device = "cuda" | |
# Configure the noise scheduler | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
# Function to initialize the pipeline with a selected model | |
def get_pipeline(model_path): | |
return StableDiffusionXLPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16, | |
scheduler=noise_scheduler, | |
use_safetensors=True, | |
) | |
# Initialize with a default model | |
current_model = model_options["PonyRealism"] | |
pipe = get_pipeline(current_model) | |
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device) | |
def generate_image(images, model_choice, style_name, prompt, negative_prompt, face_strength, likeness_strength, num_inference_steps, guidance_scale, width, height): | |
global current_model, pipe, ip_model | |
# Update the model if the choice has changed | |
if model_options[model_choice] != current_model: | |
current_model = model_options[model_choice] | |
pipe = get_pipeline(current_model) | |
ip_model = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, device) | |
torch.cuda.empty_cache() | |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(512, 512)) | |
faceid_all_embeds = [] | |
for image in images: | |
face = cv2.imread(image) | |
faces = app.get(face) | |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
faceid_all_embeds.append(faceid_embed) | |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) | |
# Apply the selected style | |
styled_prompt, styled_negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
image = ip_model.generate( | |
prompt=styled_prompt, negative_prompt=styled_negative_prompt, faceid_embeds=average_embedding, | |
scale=likeness_strength, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps | |
) | |
return image | |
def swap_to_gallery(images): | |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) | |
def remove_back_to_files(): | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
css = ''' | |
h1{margin-bottom: 0 !important} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# IP-Adapter-FaceID SDXL demo") | |
gr.Markdown("A simple Demo for the [h94/IP-Adapter-FaceID SDXL model](https://huggingface.co/h94/IP-Adapter-FaceID).") | |
with gr.Row(): | |
with gr.Column(): | |
model_dropdown = gr.Dropdown(label="Select Model", choices=list(model_options.keys()), value="PonyRealism") | |
style_dropdown = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
files = gr.Files(label="Drag 1 or more photos of your face", file_types=["image"]) | |
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=250) | |
with gr.Column(visible=False) as clear_button: | |
remove_and_reupload = gr.ClearButton(value="Remove files and upload new ones", components=files, size="sm") | |
prompt = gr.Textbox(label="Prompt", placeholder="A photo of a man/woman/person ...") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality") | |
face_strength = gr.Slider(label="Face Strength", value=7.5, step=0.1, minimum=0, maximum=15) | |
likeness_strength = gr.Slider(label="Likeness Strength", value=1.0, step=0.1, minimum=0, maximum=5) | |
with gr.Accordion("Advanced Options", open=False): | |
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100) | |
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20) | |
width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024) | |
height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024) | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated Images") | |
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) | |
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) | |
submit.click(fn=generate_image, inputs=[files, model_dropdown, style_dropdown, prompt, negative_prompt, face_strength, likeness_strength, num_inference_steps, guidance_scale, width, height], outputs=gallery) | |
demo.launch() |