File size: 4,916 Bytes
0cfb4a5
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
1a52ee5
4ec4b86
219d097
c5b40c9
e3be785
4ec4b86
e3be785
 
2fc432b
4ec4b86
 
 
 
 
 
 
 
 
 
 
1a52ee5
dd9a5a8
 
 
 
 
 
 
 
 
58b06a7
 
2f35681
4ec4b86
 
 
 
2b3ba4d
 
 
 
 
e3be785
 
58b06a7
2b3ba4d
 
dd9a5a8
2b3ba4d
 
 
 
ffd64d8
dd9a5a8
2fc432b
e3be785
e019f29
e3be785
 
4ec4b86
e3be785
3b4ee8c
4ec4b86
3b4ee8c
4ec4b86
e019f29
 
 
 
 
 
5e03798
e019f29
 
 
 
 
 
4ec4b86
e019f29
5e03798
 
 
 
 
 
 
58b06a7
5e03798
4ec4b86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
        seed = int(seed)
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        client = AsyncInferenceClient()
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        print(f"Error upscale image: {e}")
        return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel
    image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
    if image is None:
        return [None, None]
    
    image_path = "temp_image.jpg"
    try:
        image.save(image_path, format="JPEG")
    except Exception as e:
        print(f"Error al guardar la imagen: {e}")
        return [None, None]
    
    if process_upscale:
        upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image is None:
            return [image_path, image_path]
        upscale_image_path = "upscale_image.jpg"
        try:
            upscale_image.save(upscale_image_path, format="JPEG")
        except Exception as e:
            print(f"Error al guardar la imagen escalada: {e}")
            return [image_path, None]  
        return [image_path, upscale_image_path]

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Descripción de imágen")
                basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="Procesar LORA")
                process_upscale = gr.Checkbox(label="Procesar Escalador")
                upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
                    width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
                    scales = gr.Slider(label="Escalas", minimum=3.5, maximum=7, step=0.1, value=3.5)
                    steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=24)
                    seed = gr.Slider(label="Semillas", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
            
                submit_btn = gr.Button("Crear", scale=1)
                submit_btn.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[output_res],
                    queue=False
                ).then(
                    fn=gen,
                    inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora],
                    outputs=[output_res]
                )

demo.launch()