File size: 8,293 Bytes
bb68d34
 
 
 
 
7206ed3
 
 
 
 
6db6a87
63056c5
e66cf77
ea66b57
7206ed3
bb68d34
13575f0
6db6a87
0da9dca
 
7d3744b
0da9dca
 
56f79a3
 
 
 
 
4af2552
a8badba
e66cf77
a8badba
 
 
 
 
 
 
 
 
0da9dca
 
 
 
 
bf48070
c9ada4f
 
0da9dca
7206ed3
3e17a60
 
 
 
 
 
 
 
 
 
 
 
 
7206ed3
3e17a60
 
 
 
 
 
 
 
 
 
 
 
 
b11b05c
7206ed3
b11b05c
 
 
 
 
 
 
 
ff4cf6b
 
7206ed3
a8badba
 
 
 
 
 
 
a4e7597
 
ca54db1
 
4af2552
ca54db1
 
 
 
 
 
 
 
 
 
 
 
 
 
1f72d76
ca54db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f72d76
ca54db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e7597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Adapted from https://huggingface.co/spaces/hlydecker/MegaDetector_v5 
# Adapted from https://huggingface.co/spaces/sofmi/MegaDetector_DLClive/blob/main/app.py
# Adapted from https://huggingface.co/spaces/Neslihan/megadetector_dlcmodels/blob/main/app.py 
# Adapted from  https://huggingface.co/spaces/DeepLabCut/MegaDetector_DeepLabCut

import os
import yaml
import numpy as np
from matplotlib import cm
import gradio as gr
import deeplabcut
import dlclibrary
import dlclive
import transformers

from PIL import Image, ImageColor, ImageFont, ImageDraw 
import requests

from viz_utils import save_results_as_json, draw_keypoints_on_image, draw_bbox_w_text, save_results_only_dlc
from detection_utils import predict_md, crop_animal_detections
from dlc_utils import predict_dlc
from ui_utils import gradio_inputs_for_MD_DLC, gradio_outputs_for_MD_DLC, gradio_description_and_examples

from deeplabcut.utils import auxiliaryfunctions
from dlclibrary.dlcmodelzoo.modelzoo_download import (
    download_huggingface_model,
    MODELOPTIONS,
)
from dlclive import DLCLive, Processor


# TESTING (passes) download the SuperAnimal models:
#model = 'superanimal_topviewmouse'
#train_dir = 'DLC_models/sa-tvm'
#download_huggingface_model(model, train_dir)

# grab demo data cooco cat:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# megadetector and dlc model look up
MD_models_dict = {'md_v5a': "MD_models/md_v5a.0.0.pt", # 
                  'md_v5b': "MD_models/md_v5b.0.0.pt"}

# DLC models target  dirs
DLC_models_dict = {'superanimal_topviewmouse_dlcrnet': "DLC_models/sa-tvm",
                   'superanimal_quadruped_dlcrnet': "DLC_models/sa-q"}
                    


#####################################################
def predict_pipeline(img_input,
                     mega_model_input,
                     dlc_model_input_str,
                     flag_dlc_only,
                     flag_show_str_labels,
                     bbox_likelihood_th,
                     kpts_likelihood_th,
                     font_style,
                     font_size,
                     keypt_color,
                     marker_size,
                     ):

    if not flag_dlc_only:
        ############################################################                                               
        # ### Run Megadetector
        md_results = predict_md(img_input, 
                                MD_models_dict[mega_model_input], #mega_model_input,
                                size=640) #Image.fromarray(results.imgs[0])

        ################################################################
        # Obtain animal crops for bboxes with confidence above th
        list_crops = crop_animal_detections(img_input,
                                            md_results,
                                            bbox_likelihood_th)

        ############################################################

    ## Get DLC model and label map  
    
    # If model is found: do not download (previous execution is likely within same day)
    # TODO: can we ask the user whether to reload dlc model if a directory is found?
    if os.path.isdir(DLC_models_dict[dlc_model_input_str]) and \
        len(os.listdir(DLC_models_dict[dlc_model_input_str])) > 0:
        path_to_DLCmodel = DLC_models_dict[dlc_model_input_str]
    else:
        path_to_DLCmodel = DLC_models_dict[dlc_model_input_str]
        download_huggingface_model(dlc_model_input_str, path_to_DLCmodel)

    # extract map label ids to strings
    pose_cfg_path = os.path.join(DLC_models_dict[dlc_model_input_str],
                                 'pose_cfg.yaml')
    with open(pose_cfg_path, "r") as stream:
        pose_cfg_dict = yaml.safe_load(stream) 
    map_label_id_to_str = dict([(k,v) for k,v in zip([el[0] for el in pose_cfg_dict['all_joints']],  # pose_cfg_dict['all_joints'] is a list of one-element lists,
                                                     pose_cfg_dict['all_joints_names'])])


##############################################################
    # Run DLC and visualize results
    dlc_proc = Processor() #TODO: update deeplabcut.video_inference_superanimal() once merged

    # if required: ignore MD crops and run DLC on full image [mostly for testing]
    if flag_dlc_only:
        # compute kpts on input img
        list_kpts_per_crop = predict_dlc([np.asarray(img_input)],
                                         kpts_likelihood_th,
                                         path_to_DLCmodel,
                                         dlc_proc)
        # draw kpts on input img #fix!
        draw_keypoints_on_image(img_input,
                                list_kpts_per_crop[0], # a numpy array with shape [num_keypoints, 2].
                                map_label_id_to_str,
                                flag_show_str_labels,
                                use_normalized_coordinates=False,
                                font_style=font_style,
                                font_size=font_size,
                                keypt_color=keypt_color,
                                marker_size=marker_size)

        donw_file = save_results_only_dlc(list_kpts_per_crop[0], map_label_id_to_str,dlc_model_input_str)

        return img_input, donw_file

    else:
        # Compute kpts for each crop
        list_kpts_per_crop = predict_dlc(list_crops,
                                         kpts_likelihood_th,
                                         path_to_DLCmodel,
                                         dlc_proc)
        
        # resize input image to match megadetector output
        img_background = img_input.resize((md_results.ims[0].shape[1],
                                           md_results.ims[0].shape[0]))
        
        # draw keypoints on each crop and paste to background img
        for ic, (np_crop, kpts_crop) in enumerate(zip(list_crops,
                                                      list_kpts_per_crop)):

            img_crop = Image.fromarray(np_crop)

            # Draw keypts on crop
            draw_keypoints_on_image(img_crop,
                                    kpts_crop, # a numpy array with shape [num_keypoints, 2].
                                    map_label_id_to_str,
                                    flag_show_str_labels,
                                    use_normalized_coordinates=False,  # if True, then I should use md_results.xyxyn for list_kpts_crop
                                    font_style=font_style,
                                    font_size=font_size,
                                    keypt_color=keypt_color,
                                    marker_size=marker_size)

            # Paste crop in original image
            img_background.paste(img_crop, 
                                 box = tuple([int(t) for t in md_results.xyxy[0][ic,:2]]))

            # Plot bbox
            bb_per_animal = md_results.xyxy[0].tolist()[ic]
            pred = md_results.xyxy[0].tolist()[ic][4]
            if bbox_likelihood_th < pred:
                draw_bbox_w_text(img_background, 
                                    bb_per_animal,
                                    font_size=font_size)  # TODO: add selectable color for bbox?

            
        # Save detection results as json
        download_file  = save_results_as_json(md_results,list_kpts_per_crop,map_label_id_to_str, bbox_likelihood_th,dlc_model_input_str,mega_model_input)         

        return img_background, download_file



#########################################################
# Define user interface and launch
inputs = gradio_inputs_for_MD_DLC(list(MD_models_dict.keys()),
                                  list(DLC_models_dict.keys()))
outputs = gradio_outputs_for_MD_DLC()                                    
[gr_title, 
 gr_description, 
 examples] = gradio_description_and_examples()

# launch
demo = gr.Interface(predict_pipeline, 
                    inputs=inputs,
                    outputs=outputs, 
                    title=gr_title, 
                    description=gr_description,
                    examples=examples,
                    theme="huggingface")

demo.launch(enable_queue=True, share=True)