DeepSoft-Tech's picture
Upload 3 files
7ef595f
raw
history blame
6.34 kB
import os
import streamlit as st
from get_pat_data import Patent_DataCreator
from datasets import load_dataset
import re
import boto3
import time
import requests
from bs4 import BeautifulSoup
import pandas as pd
import pinecone
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
from keybert import KeyBERT
from keyphrase_vectorizers import KeyphraseCountVectorizer
kw_model=KeyBERT(model='AI-Growth-Lab/PatentSBERTa')
s3 = boto3.resource('s3',
region_name='us-east-1',
aws_access_key_id='AKIA3VGKPNV5NSVBJWEE',
aws_secret_access_key='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')
INDEX_API_KEY='b33ddf5d-5b1a-4d0e-9a3f-572008563791'
INDEX_DIMENSION=768
INDEX_ENV='gcp-starter'
INDEX_NAME='wiki-index'
# getting Pinecone credntials
# INDEX_DIMENSION=768
# logging.info(f"Index dimensions are:{INDEX_DIMENSION}")
pinecone.init(api_key=INDEX_API_KEY, environment=INDEX_ENV)
index = pinecone.Index(index_name=INDEX_NAME )
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base')
model = AutoModel.from_pretrained('intfloat/e5-base')
# data=pd.read_csv("wikicat_all.csv")
def get_pat_text(pnkc_no):
pat_data=Patent_DataCreator(pnkc_no)
bib_key,pnkc_without_kindcode,pnkc_suffix=pat_data.get_bib_key()
bib_bucket=pat_data.get_bib_bucket()
bib_data=pat_data.get_bib_data(s3)
claims_data=pat_data.get_claims_data(s3)
desc_data=pat_data.get_desc_data(s3)
df1,df2,df3=pat_data.get_patent_dfs()
dataset=pat_data.get_patent_dataset()
Title=dataset[1]['Title'][0]
Abstract=dataset[1]['Abstract'][0]
Claims=dataset[1]['Claims'][0]
Description=dataset[1]['Description'][0]
# SOI=dataset[1]['SOI'][0]
pat_text= Title+Abstract
return pat_text
# Function to fetch categories, title, and related text from a Wikipedia page
def fetch_wikipedia_data(article_title):
url = f"https://en.wikipedia.org/wiki/{article_title.replace(' ', '_')}"
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
# Find the categories section at the bottom of the page
categories_section = soup.find("div", {"class": "mw-normal-catlinks"})
if categories_section:
# Extract individual categories
categories = [cat.text for cat in categories_section.find("ul").find_all("li")]
# Extract the title
title = article_title
return {"title": title, "categories": categories}
return None
def get_wiki_category_aprch_1(pat_text):
print(pat_text)
keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=15,vectorizer=KeyphraseCountVectorizer())
titles=[]
for i in range(len(keywords)):
title=keywords[i][0]
titles.append(title)
data = []
for i in titles:
results = fetch_wikipedia_data(i)
data.append(results)
cats=[]
for i in range(len(data)):
if data[i] is not None:
cat=data[i]['categories']
cats.append(cat)
result=[j for i in cats for j in i]
res = [i for n, i in enumerate(result) if i not in result[:n]]
return titles,res
# def get_wiki_category_aprch_2(pat_text):
# print(pat_text)
# keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=10,vectorizer=KeyphraseCountVectorizer())
# titles=[]
# for i in range(len(keywords)):
# title=keywords[i][0]
# titles.append(title)
# data = []
# for i in titles:
# results = fetch_wikipedia_data(i)
# data.append(results)
# cats=[]
# for i in range(len(data)):
# if data[i] is not None:
# cat=data[i]['categories']
# cats.append(cat)
# result=[j for i in cats for j in i]
# res = [i for n, i in enumerate(result) if i not in result[:n]]
# return res
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def get_wiki_category(pat_text):
# print(pat_text)
keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=3,vectorizer=KeyphraseCountVectorizer())
titles=[]
for i in range(len(keywords)):
title=keywords[i][0]
titles.append(title)
batch_dict = tokenizer(titles, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
values = embeddings.tolist()
catgories_list = []
for value in values:
try:
response = index.query(vector=value,top_k=3,include_metadata=True)
except:
pinecone.init(api_key='b33ddf5d-5b1a-4d0e-9a3f-572008563791',environment='gcp-starter')
index = pinecone.Index("wiki-index")
response = index.query(vector=value,top_k=5,include_metadata=True)
catgories = response['matches'][0]['metadata']['categories']
catgories_list.append(catgories.split(','))
flatList = [element for innerList in catgories_list for element in innerList]
new_list = [item.replace("'", '') for item in flatList]
a_list = [s.strip() for s in new_list]
test_list = list(set(a_list))
# result=[j for i in flatList for j in i]
# res = [i for n, i in enumerate(result) if i not in result[:n]]
return test_list
def main():
st.title('Wiki Classifier')
pnkc_no = st.text_input("Enter a pnkc number:")
pat_text = st.text_area("Enter a text paragraph:")
if st.button('Get Wiki categories'):
if pnkc_no:
text = get_pat_text(pnkc_no)
else:
text=pat_text
st.write("Predicting Wiki Categories for text:",text[:200])
start_time = time.time()
titles,wiki_categories=get_wiki_category_aprch_1(text)
end_time = time.time()
st.write({f"Wiki_titles for {pnkc_no} Text":titles})
st.write({f"Wiki_categories for {pnkc_no} Text":wiki_categories})
if __name__ == "__main__":
main()