Spaces:
Running
Running
File size: 22,705 Bytes
5b68c01 550667f 711ffac b05362d 711ffac b05362d 5b68c01 daf791e 5b68c01 711ffac 6c15782 5b68c01 711ffac cf31c64 6c15782 5b68c01 6c15782 5b68c01 711ffac 5b68c01 27ecaea 276b282 183078b 5e1c255 27ecaea 338b634 27ecaea 711ffac 571403a 27ecaea 338b634 571403a b05362d 27ecaea 276b282 183078b 5e1c255 27ecaea 338b634 27ecaea 571403a 6c15782 27ecaea 6c15782 c4e2e89 6c15782 27ecaea 6c15782 5e1c255 6c15782 27ecaea eb64017 6be619f eb64017 6c15782 27ecaea eb64017 6be619f eb64017 6c15782 27ecaea eb64017 6be619f eb64017 6c15782 27ecaea eb64017 6be619f eb64017 276b282 6be619f 276b282 6c15782 27ecaea 6be619f eb64017 6c15782 5e1c255 6c15782 5e1c255 550667f c4e2e89 6c15782 eb64017 6c15782 27ecaea 550667f 6c15782 571403a 711ffac 571403a 6c15782 5b68c01 67f3d25 5e1c255 67f3d25 338b634 67f3d25 711ffac 227a556 6c15782 711ffac 865221f 711ffac 5b68c01 711ffac 6c15782 711ffac 6c15782 711ffac 6c15782 865221f 6c15782 711ffac 67f3d25 227a556 711ffac 6c15782 b05362d 6c15782 b05362d 6c15782 b05362d 6c15782 67f3d25 6c15782 711ffac 6c15782 27ecaea 227a556 67f3d25 227a556 51d107e 711ffac 227a556 711ffac 227a556 711ffac 51d107e 227a556 711ffac 227a556 276b282 51d107e 276b282 711ffac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import streamlit as st # type: ignore
import os
from datetime import datetime
from extra_streamlit_components import tab_bar, TabBarItemData
import io
from gtts import gTTS
import soundfile as sf
import wavio
from audio_recorder_streamlit import audio_recorder
import speech_recognition as sr
import whisper
import numpy as np
from translate_app import tr
import getpass
from langchain_mistralai import ChatMistralAI
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, END, MessagesState, StateGraph
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from typing import Sequence
from langchain_core.messages import BaseMessage, SystemMessage, HumanMessage, AIMessage, trim_messages
from langgraph.graph.message import add_messages
from typing_extensions import Annotated, TypedDict
from dotenv import load_dotenv
import time
import warnings
warnings.filterwarnings('ignore')
title = "Sales coaching"
sidebar_name = "Sales coaching"
dataPath = st.session_state.DataPath
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
os.environ["LANGCHAIN_HUB_API_URL"]="https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"] = "Sales Coaching Chatbot"
if st.session_state.Cloud != 0:
load_dotenv()
os.getenv("LANGCHAIN_API_KEY")
os.getenv("MISTRAL_API_KEY")
os.getenv("OPENAI_API_KEY")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Répond à toutes les questions du mieux possible dans la langue {language}, même si la question est posée dans une autre langue",
),
MessagesPlaceholder(variable_name="messages"),
]
)
class State(TypedDict):
messages: Annotated[Sequence[BaseMessage], add_messages]
language: str
def call_model(state: State):
chain = prompt | model
response = chain.invoke(state)
return {"messages": [response]}
# Define a new graph
workflow = StateGraph(state_schema=State)
# Define the (single) node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)
workflow.add_edge("model", END)
# Add memory
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
selected_index1 = 0
selected_index2 = 0
selected_index3 = 0
selected_options4 = []
selected_options5 = []
selected_options6 = []
selected_options7 = []
selected_index8 = 0
context=""
human_message1=""
thread_id =""
virulence = 1
if 'model' in st.session_state:
used_model = st.session_state.model
# @st.cache_data
def init():
global config,thread_id, context,human_message1,ai_message1,language, app, model_speech,prompt,model
global selected_index1, selected_index2, selected_index3, selected_options4,selected_options5,selected_options6,selected_options7, selected_index8, virulence, used_model
model_speech = whisper.load_model("base")
if st.button(label=tr("Nouvelle conversation"), type="primary"):
selected_index1 = 0
selected_index2 = 0
selected_index3 = 0
selected_options4 = []
selected_options5 = []
selected_options6 = []
selected_options7 = []
selected_index8 = 0
context = ""
human_message1=""
thread_id =""
virulence = 1
if 'model' in st.session_state and (st.session_state.model[:3]=="gpt") and ("OPENAI_API_KEY" in st.session_state):
model = ChatOpenAI(model=st.session_state.model,
temperature=0.8, # Adjust creativity level
max_tokens=150 # Define max output token limit
)
else:
model = ChatMistralAI(model=st.session_state.model)
if 'model' in st.session_state:
used_model=st.session_state.model
options1 = ["Directeur Commercial", "Directeur Général", "Directeur Marketing"]
translated_options1 = [tr(o) for o in options1]
selected_option1 = st.selectbox(tr("Interlocuteur"),translated_options1, index = selected_index1) # index=int(var1_init))
selected_index1 = translated_options1.index(selected_option1)
options2 = ["Entreprise qui commercialise des solutions (produits et ou services) B2B innovantes avec une équipe commerciale de plus de 15 personnes",
"Entreprise qui commercialise des solutions (produits et ou services) B2B innovantes avec une équipe commerciale de plus de 100 personnes"]
translated_options2 = [tr(o) for o in options2]
selected_option2 = st.selectbox(tr("Activité"),translated_options2, index = selected_index2) # index=int(var2_init))
selected_index2 = translated_options2.index(selected_option2)
options3 = ["Logiciels informatiques et d’application SaaS",
"Équipements et solutions industrielles",
"Services et conseil spécialisés"]
translated_options3 = [tr(o) for o in options3]
selected_option3 = st.selectbox(tr("Domaine d'activité"),translated_options3, index=selected_index3) #index=int(var3_init))
selected_index3 = translated_options3.index(selected_option3)
context = tr(f"""Tu es un {options1[selected_index1]}, d'une {options2[selected_index2]}.
Cette entreprise propose des {options3[selected_index3]}.
""")
context = st.text_area(label=tr("Résumé du Contexte (modifiable):"), value=context)
st.markdown('''
------------------------------------------------------------------------------------
''')
options4 = ["Il est difficile pour les forces de vente d'articuler clairement les messages de la proposition de valeur",
"Il est difficile d’affiner une proposition de valeur unique et pertinente de l'offre face à la concurrence qui évolue rapidement",
"Il est chronophage de former les forces de ventes sur la proposition de valeur et ses évolutions"
]
selected_options4 = st.multiselect(tr("Problématiques"),[tr(o) for o in options4], default=[tr(o) for o in selected_options4])
problematique = selected_options4
if problematique != []:
markdown_text4 = """\n"""+tr("""Les problématiques rencontrés par notre prospect (problèmes à résoudre) sont: """)
markdown_text4 = markdown_text4+"".join(f"\n- {o}" for o in problematique)
st.write(markdown_text4)
else: markdown_text4 = ""
options5 = ["Former la force de ventes sur l'articulation de la proposition de valeur",
"Aligner les messages marketing et commerciaux",
"Affiner et modéliser la proposition de valeur",
"Mettre en oeuvre des meilleures pratiques commerciales"
]
selected_options5 = st.multiselect(tr("Processus"),[tr(o) for o in options5],default=[tr(o) for o in selected_options5])
processus = selected_options5
if processus != []:
markdown_text5 = """\n\n"""+tr("""Les processus adressés par le prospect (cas d’usages) sont: """)
markdown_text5 = markdown_text5+"".join(f"\n- {o}" for o in processus)
st.write(markdown_text5)
else: markdown_text5 = ""
options6 = ["Augmenter les performances commerciales",
"Croissance du chiffre d’affaires",
"Réduire les cycles de vente",
"Augmenter taux de conversion d’affaires gagnées",
"Améliorer l’efficience et la confiance des forces de ventes",
"Réduire temps de monté en compétence des nouvelles embauches",
"Fidéliser les clients"
]
selected_options6 = st.multiselect(tr("Objectifs d'amélioration"),[tr(o) for o in options6],default=[tr(o) for o in selected_options6])
objectifs = selected_options6
if objectifs != []:
markdown_text6 = """\n\n"""+tr("""Les objectifs d’amélioration opérationnelle du prospect (Valeur ajoutée) sont: """)
markdown_text6 = markdown_text6+"".join(f"\n- {o}" for o in objectifs)
st.write(markdown_text6)
else: markdown_text6 = ""
options7 = ["Gestion de contenu commercial avec logiciel Microsoft sharePoint ou GoogleDrive",
"Playbook développé en interne sur outils génériques tels que logiciel Notion, Powerpoint, Excel, Word, Docs",
"Outils de sales enablement tels que application Seismic",
"Outils de gestion des présentations clients tels que Logiciel Powerpoint ou Google slide",
"Conseil externe en positionnement marché & produit",
"Services externes de formation des équipes commerciales"
]
selected_options7 = st.multiselect(tr("Solutions utilisées"),[tr(o) for o in options7],default=[tr(o) for o in selected_options7])
solutions_utilisees = selected_options7
if solutions_utilisees != []:
markdown_text7 = """\n\n"""+tr("""Les principales Solutions utilisées par le prospect pour traiter les cas d’usages (Catégories de solutions du marché) sont:""")
markdown_text7 = markdown_text7+"".join(f"\n- {o}" for o in solutions_utilisees)
st.write(markdown_text7)
st.write("")
else: markdown_text7 = ""
options8 = ["Connaitre les freins du prospect à l'adoption de nouvelles solutions pour résoudre ses problèmes",
"Obtenir du prospect qu'il teste la solution que je propose ou la fasse tester par un membre de son équipe",
"Obtenir du prospect qu'il achète ou s'engage à acheter la solution que je propose"]
translated_options8 = [tr(o) for o in options8]
selected_option8 = st.selectbox(tr("Objectif du vendeur lors de sa conversation avec le prospect:"),translated_options8, index = selected_index8)
selected_index8 = translated_options8.index(selected_option8)
markdown_text8 = """\n\n"""+tr("""L'objectif du vendeur lors de sa conversation avec le prospect est: """)+"""\n"""+(f"""{translated_options8[selected_index8]}""")
col1, col2, col3 = st.columns(3)
with col1:
virulence = st.slider(tr("Virulence (choisissez une valeur entre 1 et 5)"), min_value=1, max_value=5, step=1,value=virulence)
markdown_text9 = """\n\n"""+tr(f"""Le prospect est très occupé et n'aime être dérangé inutilement.
Tu vas utiliser une échelle de 1 à 5 de virulence du prospect à l'égard du vendeur.
Pour cette simulation utilise le niveaux {virulence}""")
human_message1 = tr("""Je souhaites que nous ayons une conversation verbale entre un commercial de mon entreprise, et toi que je prospecte.
Mon entreprise propose une solution logicielle pour gérer la proposition de valeur d’entreprises B2B qui commercialises des solutions technologiques.
""")+markdown_text4+markdown_text5+markdown_text6+markdown_text7+markdown_text8+markdown_text9+tr(f"""
Je suis le vendeur.
Répond à mes questions en tant que {options1[selected_index1]}, connaissant mal le concept de proposition de valeur,
et mon équipe de vente n'est pas performante.
Attention: Ce n'est pas toi qui m'aide, c'est moi qui t'aide avec ma solution.
""")
human_message1 = st.text_area(label=tr("Consigne"), value=tr(human_message1),height=300)
st.markdown('''
------------------------------------------------------------------------------------
''')
ai_message1 = tr(f"J'ai bien compris, je suis un {options1[selected_index1]} prospecté et je réponds seulement à tes questions. Je réponds à une seule question à la fois, sans commencer mes réponses par 'En tant que {options1[selected_index1]}'")
# ai_message1 = st.text_area(label=tr("Réponse du prospect"), value=ai_message1)
messages = [
SystemMessage(content=context),
HumanMessage(content=human_message1),
AIMessage(content=ai_message1),
HumanMessage(content="")
]
st.write("")
if ("context" in st.session_state) and ("human_message1" in st.session_state):
if (st.session_state.context != context) or (st.session_state.human_message1 != human_message1 ) or (used_model != st.session_state.model) or (thread_id==""):
to_init = True
else:
to_init = False
else:
to_init = True
if to_init:
thread_id = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
config = {"configurable": {"thread_id": thread_id}}
app.invoke(
{"messages": messages, "language": language},
config,
)
st.session_state.thread_id = thread_id
st.session_state.config = config
st.session_state.messages_init = messages
st.session_state.context = context
st.session_state.human_message1 = human_message1
st.session_state.messages = []
if 'model' in st.session_state and (st.session_state.model[:3]=="gpt") and ("OPENAI_API_KEY" in st.session_state):
model = ChatOpenAI(model=st.session_state.model,
temperature=0.8, # Adjust creativity level
max_tokens=150 # Define max output token limit
)
else:
model = ChatMistralAI(model=st.session_state.model)
if 'model' in st.session_state:
used_model=st.session_state.model
return config, thread_id
# Fonction pour générer et jouer le texte en speech
def play_audio(custom_sentence, Lang_target, speed=1.0):
# Générer le speech avec gTTS
audio_stream_bytesio_src = io.BytesIO()
tts = gTTS(custom_sentence, lang=Lang_target)
# Revenir au début du flux audio
audio_stream_bytesio_src.seek(0)
audio_stream_bytesio_src.truncate(0)
tts.write_to_fp(audio_stream_bytesio_src)
audio_stream_bytesio_src.seek(0)
# Charger l'audio dans un tableau numpy
data, samplerate = sf.read(audio_stream_bytesio_src)
# Modifier la vitesse de lecture en ajustant le taux d'échantillonnage
new_samplerate = int(samplerate * speed)
new_audio_stream_bytesio = io.BytesIO()
# Enregistrer l'audio avec la nouvelle fréquence d'échantillonnage
sf.write(new_audio_stream_bytesio, data, new_samplerate, format='wav')
new_audio_stream_bytesio.seek(0)
# Lire l'audio dans Streamlit
# time.sleep(2)
st.audio(new_audio_stream_bytesio, start_time=0, autoplay=True)
def run():
global thread_id, config, model_speech, language,prompt,model, model_name
st.write("")
st.write("")
st.title(tr(title))
if 'language_label' in st.session_state:
language = st.session_state['language_label']
else: language = "French"
chosen_id = tab_bar(data=[
TabBarItemData(id="tab1", title=tr("Initialisation"), description=tr("d'une nouvelle conversation")),
TabBarItemData(id="tab2", title=tr("Conversation"), description=tr("avec le prospect")),
TabBarItemData(id="tab3", title=tr("Evaluation"), description=tr("de l'acte de vente"))],
default="tab1")
if (chosen_id == "tab1"):
if 'model' in st.session_state and (st.session_state.model[:3]=="gpt") and ("OPENAI_API_KEY" in st.session_state):
model = ChatOpenAI(model=st.session_state.model,
temperature=0.8, # Adjust creativity level
max_tokens=150 # Define max output token limit
)
else:
model = ChatMistralAI(model=st.session_state.model)
config,thread_id = init()
query = ""
st.button(label=tr("Validez"), type="primary")
st.write("**thread_id:** "+thread_id)
elif (chosen_id == "tab2"):
try:
config
# On ne fait rien
except NameError:
config,thread_id = init()
with st.container():
# Diviser l'écran en deux colonnes
col1, col2 = st.columns(2)
# with col1:
# st.markdown(
# """
# <div style="height: 400px;">
# </div>
# """,
# unsafe_allow_html=True,
# )
with col1:
st.write("**thread_id:** "+thread_id)
query = ""
audio_bytes = audio_recorder (pause_threshold=2.0, sample_rate=16000, auto_start=False, text=tr("Cliquez pour parler, puis attendre 2sec."), \
recording_color="#e8b62c", neutral_color="#1ec3bc", icon_size="6x",)
if audio_bytes:
# st.write("**"+tr("Vendeur")+" :**\n")
# Fonction pour générer et jouer le texte en speech
st.audio(audio_bytes, format="audio/wav", autoplay=False)
try:
detection = False
if detection:
# Create a BytesIO object from the audio stream
audio_stream_bytesio = io.BytesIO(audio_bytes)
# Read the WAV stream using wavio
wav = wavio.read(audio_stream_bytesio)
# Extract the audio data from the wavio.Wav object
audio_data = wav.data
# Convert the audio data to a NumPy array
audio_input = np.array(audio_data, dtype=np.float32)
audio_input = np.mean(audio_input, axis=1)/32768
result = model_speech.transcribe(audio_input)
Lang_detected = result["language"]
query = result["text"]
else:
# Avec l'aide de la bibliothèque speech_recognition de Google
Lang_detected = st.session_state['Language']
# Transcription google
audio_stream = sr.AudioData(audio_bytes, 32000, 2)
r = sr.Recognizer()
query = r.recognize_google(audio_stream, language = Lang_detected)
# Transcription
# st.write("**"+tr("Vendeur :")+"** "+query)
with st.chat_message("user"):
st.markdown(query)
st.write("")
if query != "":
input_messages = [HumanMessage(query)]
output = app.invoke(
{"messages": input_messages, "language": language},
config,
)
#with st.chat_message("user"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": query})
# Récupération de la réponse
custom_sentence = output["messages"][-1].content
# Joue l'audio
play_audio(custom_sentence,Lang_detected , 1)
# st.write("**"+tr("Prospect :")+"** "+custom_sentence)
with st.chat_message("assistant"):
st.markdown(custom_sentence)
# Add user message to chat history
st.session_state.messages.append({"role": "assistant", "content": custom_sentence})
except KeyboardInterrupt:
st.write(tr("Arrêt de la reconnaissance vocale."))
except:
st.write(tr("Problème, essayer de nouveau.."))
st.write("")
# Ajouter un espace pour séparer les zones
# st.divider()
with col2:
if ("messages" in st.session_state) :
if (st.session_state.messages != []):
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
else:
st.write("**thread_id:** "+thread_id)
st.write("")
q1 = st.text_input(label="", value=tr("Combien le vendeur a-t-il posé de questions ouvertes ?"),label_visibility="collapsed")
output = app.invoke(
{"messages": q1,"language": language},
config,
)
custom_sentence = output["messages"][-1].content
st.write(custom_sentence)
st.write("")
if (used_model[:3] == 'mis'):
time.sleep(2)
st.divider()
st.write("")
q2 = st.text_input(label="", value=tr(f"Quel est le % de temps de parole du prospect ?"),label_visibility="collapsed")
output = app.invoke(
{"messages": q2,"language": language},
config,
)
custom_sentence = output["messages"][-1].content
st.write(custom_sentence)
st.write("")
if (used_model[:3] == 'mis'):
time.sleep(2)
st.divider()
st.write("")
q3 = st.text_input(label="", value=tr("Peux tu me donner une analyse succinte de la tonalité du vendeur ?"),label_visibility="collapsed")
output = app.invoke(
{"messages": q3,"language": language},
config,
)
custom_sentence = output["messages"][-1].content
st.write(custom_sentence)
st.write("")
if (used_model[:3] == 'mis'):
time.sleep(2)
st.divider()
st.write("")
q3 = st.text_input(label="", value=tr("Le vendeur a-t-il atteint son objectif ? Si ce n'est pas cas, est il loin de l'avoir atteint ? Dans tous les cas, explique ta réponse."),label_visibility="collapsed")
output = app.invoke(
{"messages": q3,"language": language},
config,
)
custom_sentence = output["messages"][-1].content
st.write(custom_sentence)
st.write("") |