File size: 18,736 Bytes
5b68c01
 
550667f
711ffac
 
 
 
b05362d
 
711ffac
b05362d
 
5b68c01
 
 
daf791e
5b68c01
 
 
 
 
 
 
711ffac
6c15782
5b68c01
 
 
 
 
 
 
 
 
 
 
 
711ffac
 
cf31c64
 
6c15782
5b68c01
 
 
 
 
 
6c15782
5b68c01
 
 
 
 
 
 
 
 
 
 
711ffac
5b68c01
 
 
 
 
 
 
 
 
 
 
 
 
 
711ffac
571403a
6c15782
571403a
b05362d
6c15782
 
 
 
 
571403a
6c15782
 
 
 
 
c4e2e89
6c15782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550667f
 
c4e2e89
6c15782
 
 
 
 
 
 
 
 
 
550667f
6c15782
 
 
571403a
 
 
 
711ffac
571403a
6c15782
5b68c01
67f3d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711ffac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227a556
6c15782
711ffac
 
 
 
6c15782
711ffac
5b68c01
 
711ffac
 
6c15782
 
 
 
711ffac
 
6c15782
 
711ffac
 
 
 
6c15782
 
 
 
 
 
 
 
 
 
 
711ffac
 
 
67f3d25
227a556
711ffac
 
 
 
 
6c15782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05362d
6c15782
 
 
 
 
 
 
 
 
b05362d
6c15782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05362d
6c15782
 
 
 
 
 
 
 
 
 
 
 
 
 
67f3d25
6c15782
 
 
 
 
 
 
 
711ffac
6c15782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227a556
 
 
67f3d25
 
227a556
 
 
 
 
 
 
 
711ffac
227a556
711ffac
227a556
 
 
 
 
 
 
711ffac
227a556
 
711ffac
227a556
 
 
 
 
 
 
711ffac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import streamlit as st # type: ignore
import os
from datetime import datetime
from extra_streamlit_components import tab_bar, TabBarItemData
import io
from gtts import gTTS
import soundfile as sf
import wavio
from audio_recorder_streamlit import audio_recorder
import speech_recognition as sr
import whisper
import numpy as np
from translate_app import tr
import getpass
from langchain_mistralai import ChatMistralAI
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, END, MessagesState, StateGraph
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from typing import Sequence
from langchain_core.messages import BaseMessage, SystemMessage, HumanMessage, AIMessage, trim_messages
from langgraph.graph.message import add_messages
from typing_extensions import Annotated, TypedDict
from dotenv import load_dotenv
import time

import warnings
warnings.filterwarnings('ignore')

title = "Sales coaching"
sidebar_name = "Sales coaching"
dataPath = st.session_state.DataPath

os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
os.environ["LANGCHAIN_HUB_API_URL"]="https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"] = "Sales Coaching Chatbot" 
if st.session_state.Cloud != 0:
    load_dotenv()
os.getenv("LANGCHAIN_API_KEY")
os.getenv("MISTRAL_API_KEY")
os.getenv("OPENAI_API_KEY")


prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "Répond à toutes les questions du mieux possible dans la langue {language}, même si la question est posée dans une autre langue",
        ),
        MessagesPlaceholder(variable_name="messages"),
    ]
)

class State(TypedDict):
    messages: Annotated[Sequence[BaseMessage], add_messages]
    language: str

def call_model(state: State):
    chain = prompt | model
    response = chain.invoke(state)
    return {"messages": [response]}

# Define a new graph
workflow = StateGraph(state_schema=State)

# Define the (single) node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)
workflow.add_edge("model", END)

# Add memory
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)

# @st.cache_data
def init():
    global config,thread_id, context,human_message1,ai_message1,language, app, model_speech,language,prompt,model
    
    model_speech = whisper.load_model("base") 
       
    options = ["Directeur Commercial", "Directeur Général", "Directeur Marketing"]
    translated_options = [tr(o) for o in options]
    selected_option = st.selectbox(tr("Interlocuteur"),translated_options)
    selected_index = translated_options.index(selected_option)
    
    options2 = ["Entreprise qui commercialise des solutions (produits et ou services) B2B innovantes avec une équipe commerciale de plus de 15 personnes",
                "Entreprise qui commercialise des solutions (produits et ou services) B2B innovantes avec une équipe commerciale de plus de 100 personnes"]
    translated_options2 = [tr(o) for o in options2]
    selected_option2 = st.selectbox(tr("Activité"),translated_options2)
    selected_index2 = translated_options2.index(selected_option2)
    
    options3 = ["Logiciels informatiques et d’application SaaS",
                "Équipements et solutions industrielles",
                "Services et conseil spécialisés"]
    translated_options3 = [tr(o) for o in options3]
    selected_option3 = st.selectbox(tr("Domaine d'activité"),translated_options3)
    selected_index3 = translated_options3.index(selected_option3)

    context = tr(f"""Tu es un {options[selected_index]}, mal organisé, d'une {options2[selected_index2]}.
Cette entreprise propose des {options3[selected_index3]}.
    """)
    context = st.text_area(label=tr("Résumé du Contexte (modifiable):"), value=context)
    st.markdown('''
                ------------------------------------------------------------------------------------
                ''')
    
    options4 = ["Il est difficile pour les forces de vente d'articuler clairement les messages de la proposition de valeur",
                "Il est difficile d’affiner une proposition de valeur unique et pertinente de l'offre face à la concurrence qui évolue rapidement",
                "Il est chronophage de former les forces de ventes sur la proposition de valeur et ses évolutions"
    ]
    selected_options4 = st.multiselect(tr("Problématiques"),[tr(o) for o in options4])
    problematique = [tr(o) for o in selected_options4]
    markdown_text4 = tr("""
                        Les problématiques rencontrés par notre prospect (problèmes à résoudre) sont:""")
    markdown_text4 = markdown_text4+"".join(f"\n- {o}" for o in problematique)
    st.write(markdown_text4)
 
    options5 = ["Former la force de ventes sur l'articulation de la proposition de valeur",
                "Aligner les messages marketing et commerciaux",
                "Affiner et modéliser la proposition de valeur",
                "Mettre en oeuvre des meilleures pratiques commerciales"
    ]
    selected_options5 = st.multiselect(tr("Processus"),[tr(o) for o in options5])
    processus = [tr(o) for o in selected_options5]
    markdown_text5 = tr("""
                        \nLes processus adressés par le prospect (cas d’usages) sont:""")
    markdown_text5 = markdown_text5+"".join(f"\n- {o}" for o in processus)
    st.write(markdown_text5)
    
    options6 = ["Augmenter les performances commerciales",
                "Croissance du chiffre d’affaires",
                "Réduire les cycles de vente",
                "Augmenter taux de conversion d’affaires gagnées",
                "Améliorer l’efficience et la confiance des forces de ventes",
                "Réduire temps de monté en compétence des nouvelles embauches",
                "Fidéliser les clients"
    ]
    selected_options6 = st.multiselect(tr("Objectifs d'amélioration"),[tr(o) for o in options6])
    objectifs = [tr(o) for o in selected_options6]
    markdown_text6 = tr("""
                        \nLes objectifs d’amélioration opérationnelle du prospect (Valeur ajoutée) sont:""")
    markdown_text6 = markdown_text6+"".join(f"\n- {o}" for o in objectifs)
    st.write(markdown_text6)
    
    options7 = ["Gestion de contenu commercial avec logiciel Microsoft sharePoint ou GoogleDrive",
                "Playbook développé en interne sur outils génériques tels que logiciel Notion, Powerpoint, Excel, Word, Docs",
                "Outils de sales enablement tels que application Seismic",
                "Outils de gestion des présentations clients tels que Logiciel Powerpoint ou Google slide",
                "Conseil externe en positionnement marché & produit",
                "Services externes de formation des équipes commerciales"
    ]
    selected_options7 = st.multiselect(tr("Solutions utilisées"),[tr(o) for o in options7])
    solutions_utilisees = [tr(o) for o in selected_options7]
    markdown_text7 = tr("""
                        \nLes principales Solutions utilisées par nos prospects pour traiter les cas d’usages (Catégories de solutions du marché) sont:""")
    markdown_text7 = markdown_text7+"".join(f"\n- {o}" for o in solutions_utilisees)
    st.write(markdown_text7)
    st.write("")
    col1, col2, col3 = st.columns(3)
    with col1:
        virulence = st.slider(tr("Virulence (choisissez une valeur entre 1 et 5)"), min_value=1, max_value=5, step=1)
    markdown_text8 = tr(f"""\nTu vas utiliser une échelle de 1 à 5 de virulence. Pour cette simulation utilise le niveaux {virulence}""")
    
    human_message1 = tr("""Je souhaites que nous ayons une conversation verbale entre un commercial de mon entreprise,  et toi que je prospecte.
Mon entreprise propose une solution logicielle pour gérer la proposition de valeur d’entreprises B2B qui commercialises des solutions technologiques.    
""")+markdown_text4+markdown_text5+markdown_text6+markdown_text7+tr("""

Je suis le vendeur.
Répond à mes questions en tant que Directeur commercial désorganisé, connaissant mal le concept de proposition de valeur,
et mon équipe de vente n'est pas performante.  
 
Attention: Ce n'est pas toi qui m'aide, c'est moi qui t'aide avec ma solution.  

""")+markdown_text8

    human_message1 = st.text_area(label=tr("Consigne"), value=tr(human_message1),height=300)
    st.markdown('''
                ------------------------------------------------------------------------------------
                ''')
    
    ai_message1 = tr(f"J'ai bien compris, je suis un {options[selected_index]} prospecté et je réponds seulement à tes questions. Je réponds à une seule question à la fois, sans commencer mes réponses par 'En tant que {options[selected_index]}'")   


    
    # ai_message1 = st.text_area(label=tr("Réponse du prospect"), value=ai_message1)
    messages = [
        SystemMessage(content=context),
        HumanMessage(content=human_message1),
        AIMessage(content=ai_message1),
        HumanMessage(content="")
        ]

    st.write("")
    if ("context" in st.session_state) and ("human_message1" in st.session_state):
        if (st.session_state.context != context) or (st.session_state.human_message1 != human_message1 ):
            to_init = True
        else:
            to_init = False
    else:
        to_init = True
        
    if to_init:
        thread_id = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        config = {"configurable": {"thread_id": thread_id}}
        app.invoke(
        {"messages": messages, "language": language},
        config,
        )  
        st.session_state.thread_id = thread_id
        st.session_state.config = config
        st.session_state.messages_init = messages
        st.session_state.context = context
        st.session_state.human_message1 = human_message1
        st.session_state.messages = []
        
    return config, thread_id

# Fonction pour générer et jouer le texte en speech
def play_audio(custom_sentence, Lang_target, speed=1.0):
    # Générer le speech avec gTTS
    audio_stream_bytesio_src = io.BytesIO()
    tts = gTTS(custom_sentence, lang=Lang_target)
    
    # Revenir au début du flux audio
    audio_stream_bytesio_src.seek(0)
    audio_stream_bytesio_src.truncate(0)
    
    tts.write_to_fp(audio_stream_bytesio_src)

    audio_stream_bytesio_src.seek(0)
    
    # Charger l'audio dans un tableau numpy
    data, samplerate = sf.read(audio_stream_bytesio_src)

    # Modifier la vitesse de lecture en ajustant le taux d'échantillonnage
    new_samplerate = int(samplerate * speed)
    new_audio_stream_bytesio = io.BytesIO()

    # Enregistrer l'audio avec la nouvelle fréquence d'échantillonnage
    sf.write(new_audio_stream_bytesio, data, new_samplerate, format='wav')
    new_audio_stream_bytesio.seek(0)

    # Lire l'audio dans Streamlit
    # time.sleep(2)
    st.audio(new_audio_stream_bytesio, start_time=0, autoplay=True)



def run():
    global thread_id, config, model_speech, language,prompt,model
   
    st.write("")
    st.write("")
    st.title(tr(title))
    
    if 'language_label' in st.session_state:
        language = st.session_state['language_label'] 
    else: language = "French"
    
    chosen_id = tab_bar(data=[
        TabBarItemData(id="tab1", title=tr("Initialisation"), description=tr("d'une nouvelle conversation")),
        TabBarItemData(id="tab2", title=tr("Conversation"), description=tr("avec le prospect")),
        TabBarItemData(id="tab3", title=tr("Evaluation"), description=tr("de l'acte de vente"))],          
        default="tab1")
                        
                        
    if (chosen_id == "tab1"):
        if 'model' in st.session_state and (st.session_state.model[:3]=="gpt") and ("OPENAI_API_KEY" in st.session_state):
            model = ChatOpenAI(model=st.session_state.model,
                                 temperature=0.8,  # Adjust creativity level
                                 max_tokens=150   # Define max output token limit
                                )
            
        else: 
            st.session_state.model = "mistral-large-latest"
            model = ChatMistralAI(model=st.session_state.model)
            

        config,thread_id = init()
        query = ""
        st.button(label=tr("Validez"), type="primary")
        st.write("**thread_id:** "+thread_id)
    elif (chosen_id == "tab2"):
        try:
            config
            # On ne fait rien
        except NameError:
            config,thread_id = init()
        with st.container():
            # Diviser l'écran en deux colonnes
            col1, col2 = st.columns(2)
            # with col1:
            #     st.markdown(
            #         """
            #         <div style="height: 400px;">
            #         </div>
            #         """,
            #         unsafe_allow_html=True,
            #         )
            with col1:
                st.write("**thread_id:** "+thread_id)
                query = ""
                audio_bytes = audio_recorder (pause_threshold=2.0,  sample_rate=16000, auto_start=False, text=tr("Cliquez pour parler, puis attendre 2sec."), \
                                            recording_color="#e8b62c", neutral_color="#1ec3bc", icon_size="6x",)
            
                if audio_bytes:
                    # st.write("**"+tr("Vendeur")+" :**\n")
                    # Fonction pour générer et jouer le texte en speech
                    st.audio(audio_bytes, format="audio/wav", autoplay=False)
                    try:
                        detection = False
                        if detection:
                            # Create a BytesIO object from the audio stream
                            audio_stream_bytesio = io.BytesIO(audio_bytes)

                            # Read the WAV stream using wavio
                            wav = wavio.read(audio_stream_bytesio) 

                            # Extract the audio data from the wavio.Wav object
                            audio_data = wav.data

                            # Convert the audio data to a NumPy array
                            audio_input = np.array(audio_data, dtype=np.float32)
                            audio_input = np.mean(audio_input, axis=1)/32768
                                    
                            result = model_speech.transcribe(audio_input)
                            Lang_detected = result["language"]
                            query = result["text"]
                        
                        else:
                            # Avec l'aide de la bibliothèque speech_recognition de Google
                            Lang_detected = st.session_state['Language'] 
                            # Transcription google
                            audio_stream = sr.AudioData(audio_bytes, 32000, 2) 
                            r = sr.Recognizer()
                            query = r.recognize_google(audio_stream, language = Lang_detected)
                                
                        # Transcription 
                        # st.write("**"+tr("Vendeur :")+"** "+query)
                        with st.chat_message("user"):
                            st.markdown(query)
                        st.write("")
                    
                        if query != "":
                            input_messages = [HumanMessage(query)]
                            output = app.invoke(
                                {"messages": input_messages, "language": language},
                                config,
                            )
                            #with st.chat_message("user"):
                            # Add user message to chat history
                            st.session_state.messages.append({"role": "user", "content": query})

                            # Récupération de la réponse
                            custom_sentence = output["messages"][-1].content
                            
                            # Joue l'audio
                            play_audio(custom_sentence,Lang_detected , 1)
                            
                            # st.write("**"+tr("Prospect :")+"** "+custom_sentence)
                            with st.chat_message("assistant"):
                                st.markdown(custom_sentence)
                            
                            # Add user message to chat history
                            st.session_state.messages.append({"role": "assistant", "content": custom_sentence})
                            

                            
                    except KeyboardInterrupt:
                        st.write(tr("Arrêt de la reconnaissance vocale."))
                    except:
                        st.write(tr("Problème, essayer de nouveau.."))
                st.write("")
        # Ajouter un espace pour séparer les zones
        # st.divider()
            with col2:
                # with st.container():
                if query:
                # Display chat messages from history on app rerun
                
                    for message in st.session_state.messages:
                        with st.chat_message(message["role"]):
                            st.markdown(message["content"])
    else:
        st.write("")
        st.write("")
        st.write("**thread_id:** "+thread_id)
        st.write("")
        q1 = st.text_input(label="", value=tr("Combien le vendeur a-t-il posé de questions ouvertes ?"),label_visibility="collapsed")
        output = app.invoke(
            {"messages": q1,"language": language},
            config,
        ) 
        custom_sentence = output["messages"][-1].content  
        st.write(custom_sentence)
        st.write("")
        
        st.divider()
        st.write("")
        q2 = st.text_input(label="", value=tr(f"Quel est le % de temps de parole du prospect ?"),label_visibility="collapsed")
        output = app.invoke(
            {"messages": q2,"language": language},
            config,
        ) 
        custom_sentence = output["messages"][-1].content  
        st.write(custom_sentence)
        st.write("")
        
        st.divider()
        st.write("")
        q3 = st.text_input(label="", value=tr("Peux tu me donner une analyse succinte de la tonalité du vendeur ?"),label_visibility="collapsed")
        output = app.invoke(
            {"messages": q3,"language": language},
            config,
        ) 
        custom_sentence = output["messages"][-1].content  
        st.write(custom_sentence)
        st.write("")