Spaces:
Runtime error
Runtime error
File size: 5,963 Bytes
14a3421 b8357da 14a3421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
from pathlib import Path
import streamlit as st
from dotenv import load_dotenv
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
load_dotenv()
import os
from typing import List, Tuple
import numpy as np
from langchain.chat_models import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.schema import Document
from data import load_db
from names import DATASET_ID, MODEL_ID
from storage import RedisStorage, UserInput
from utils import weighted_random_sample
class RetrievalType:
FIRST_MATCH = "first-match"
POOL_MATCHES = "pool-matches"
Matches = List[Tuple[Document, float]]
USE_STORAGE = os.environ.get("USE_STORAGE", "True").lower() in ("true", "t", "1")
print("USE_STORAGE", USE_STORAGE)
@st.cache_resource
def init():
embeddings = OpenAIEmbeddings(model=MODEL_ID)
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}"
db = load_db(
dataset_path,
embedding_function=embeddings,
token=os.environ["ACTIVELOOP_TOKEN"],
# org_id=os.environ["ACTIVELOOP_ORG_ID"],
read_only=True,
)
storage = RedisStorage(
host=os.environ["UPSTASH_URL"], password=os.environ["UPSTASH_PASSWORD"]
)
prompt = PromptTemplate(
input_variables=["user_input"],
template=Path("prompts/bot.prompt").read_text(),
)
llm = ChatOpenAI(temperature=0.3)
chain = LLMChain(llm=llm, prompt=prompt)
return db, storage, chain
# Don't show the setting sidebar
if "sidebar_state" not in st.session_state:
st.session_state.sidebar_state = "collapsed"
st.set_page_config(initial_sidebar_state=st.session_state.sidebar_state)
db, storage, chain = init()
st.title("PlayMyEmotions ๐ต๐ฐ๐ฎ")
st.markdown(
"""
*<small>Made with [DeepLake](https://www.deeplake.ai/) ๐ and [LangChain](https://python.langchain.com/en/latest/index.html) ๐ฆโ๏ธ</small>*
๐ซ Unleash the magic within you with our enchanting app, turning your sentiments into a Disney soundtrack! ๐ Just express your emotions, and embark on a whimsical journey as we tailor a Disney melody to match your mood. ๐๐""",
unsafe_allow_html=True,
)
how_it_works = st.expander(label="How it works")
text_input = st.text_input(
label="How are you feeling today?",
placeholder="I am ready to rock and rool!",
)
run_btn = st.button("Make me sing! ๐ถ")
with how_it_works:
st.markdown(
"""
The application follows a sequence of steps to deliver Disney songs matching the user's emotions:
- **User Input**: The application starts by collecting user's emotional state through a text input.
- **Emotion Encoding**: The user-provided emotions are then fed to a Language Model (LLM). The LLM interprets and encodes these emotions.
- **Similarity Search**: These encoded emotions are utilized to perform a similarity search within our [vector database](https://www.deeplake.ai/). This database houses Disney songs, each represented as emotional embeddings.
- **Song Selection**: From the pool of top matching songs, the application randomly selects one. The selection is weighted, giving preference to songs with higher similarity scores.
- **Song Retrieval**: The selected song's embedded player is displayed on the webpage for the user. Additionally, the LLM interpreted emotional state associated with the chosen song is displayed.
"""
)
placeholder_emotions = st.empty()
placeholder = st.empty()
with st.sidebar:
st.text("App settings")
filter_threshold = st.slider(
"Threshold used to filter out low scoring songs",
min_value=0.0,
max_value=1.0,
value=0.8,
)
max_number_of_songs = st.slider(
"Max number of songs we will retrieve from the db",
min_value=5,
max_value=50,
value=20,
step=1,
)
number_of_displayed_songs = st.slider(
"Number of displayed songs", min_value=1, max_value=4, value=2, step=1
)
def filter_scores(matches: Matches, th: float = 0.8) -> Matches:
return [(doc, score) for (doc, score) in matches if score > th]
def normalize_scores_by_sum(matches: Matches) -> Matches:
scores = [score for _, score in matches]
tot = sum(scores)
return [(doc, (score / tot)) for doc, score in matches]
def get_song(user_input: str, k: int = 20):
emotions = chain.run(user_input=user_input)
matches = db.similarity_search_with_score(emotions, distance_metric="cos", k=k)
# [print(doc.metadata['name'], score) for doc, score in matches]
docs, scores = zip(
*normalize_scores_by_sum(filter_scores(matches, filter_threshold))
)
choosen_docs = weighted_random_sample(
np.array(docs), np.array(scores), n=number_of_displayed_songs
).tolist()
return choosen_docs, emotions
def set_song(user_input):
if user_input == "":
return
# take first 120 chars
user_input = user_input[:120]
docs, emotions = get_song(user_input, k=max_number_of_songs)
print(docs)
songs = []
with placeholder_emotions:
st.markdown("Your emotions: `" + emotions + "`")
with placeholder:
iframes_html = ""
for doc in docs:
name = doc.metadata["name"]
print(f"song = {name}")
songs.append(name)
embed_url = doc.metadata["embed_url"]
iframes_html += (
f'<iframe src="{embed_url}" style="border:0;height:100px"> </iframe>'
)
st.markdown(
f"<div style='display:flex;flex-direction:column'>{iframes_html}</div>",
unsafe_allow_html=True,
)
if USE_STORAGE:
success_storage = storage.store(
UserInput(text=user_input, emotions=emotions, songs=songs)
)
if not success_storage:
print("[ERROR] was not able to store user_input")
if run_btn:
set_song(text_input)
|