PlayMyEmotions / app.py
DjPapzin's picture
Upload 9 files
14a3421
raw
history blame
5.96 kB
from pathlib import Path
import streamlit as st
from dotenv import load_dotenv
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
load_dotenv()
import os
from typing import List, Tuple
import numpy as np
from langchain.chat_models import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.schema import Document
from data import load_db
from names import DATASET_ID, MODEL_ID
from storage import RedisStorage, UserInput
from utils import weighted_random_sample
class RetrievalType:
FIRST_MATCH = "first-match"
POOL_MATCHES = "pool-matches"
Matches = List[Tuple[Document, float]]
USE_STORAGE = os.environ.get("USE_STORAGE", "True").lower() in ("true", "t", "1")
print("USE_STORAGE", USE_STORAGE)
@st.cache_resource
def init():
embeddings = OpenAIEmbeddings(model=MODEL_ID)
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}"
db = load_db(
dataset_path,
embedding_function=embeddings,
token=os.environ["ACTIVELOOP_TOKEN"],
# org_id=os.environ["ACTIVELOOP_ORG_ID"],
read_only=True,
)
storage = RedisStorage(
host=os.environ["UPSTASH_URL"], password=os.environ["UPSTASH_PASSWORD"]
)
prompt = PromptTemplate(
input_variables=["user_input"],
template=Path("prompts/bot.prompt").read_text(),
)
llm = ChatOpenAI(temperature=0.3)
chain = LLMChain(llm=llm, prompt=prompt)
return db, storage, chain
# Don't show the setting sidebar
if "sidebar_state" not in st.session_state:
st.session_state.sidebar_state = "collapsed"
st.set_page_config(initial_sidebar_state=st.session_state.sidebar_state)
db, storage, chain = init()
st.title("PlayMyEmotions ๐ŸŽต๐Ÿฐ๐Ÿ”ฎ")
st.markdown(
"""
*<small>Made with [DeepLake](https://www.deeplake.ai/) ๐Ÿš€ and [LangChain](https://python.langchain.com/en/latest/index.html) ๐Ÿฆœโ›“๏ธ</small>*
๐Ÿ’ซ Unleash the magic within you with our enchanting app, turning your sentiments into a Disney soundtrack! ๐ŸŒˆ Just express your emotions, and embark on a whimsical journey as we tailor a Disney melody to match your mood. ๐Ÿ‘‘๐Ÿ’–""",
unsafe_allow_html=True,
)
how_it_works = st.expander(label="How it works")
text_input = st.text_input(
label="How are you feeling today?",
placeholder="I am ready to rock and rool!",
)
run_btn = st.button("Make me sing! ๐ŸŽถ")
with how_it_works:
st.markdown(
"""
The application follows a sequence of steps to deliver Disney songs matching the user's emotions:
- **User Input**: The application starts by collecting user's emotional state through a text input.
- **Emotion Encoding**: The user-provided emotions are then fed to a Language Model (LLM). The LLM interprets and encodes these emotions.
- **Similarity Search**: These encoded emotions are utilized to perform a similarity search within our [vector database](https://www.deeplake.ai/). This database houses Disney songs, each represented as emotional embeddings.
- **Song Selection**: From the pool of top matching songs, the application randomly selects one. The selection is weighted, giving preference to songs with higher similarity scores.
- **Song Retrieval**: The selected song's embedded player is displayed on the webpage for the user. Additionally, the LLM interpreted emotional state associated with the chosen song is displayed.
"""
)
placeholder_emotions = st.empty()
placeholder = st.empty()
with st.sidebar:
st.text("App settings")
filter_threshold = st.slider(
"Threshold used to filter out low scoring songs",
min_value=0.0,
max_value=1.0,
value=0.8,
)
max_number_of_songs = st.slider(
"Max number of songs we will retrieve from the db",
min_value=5,
max_value=50,
value=20,
step=1,
)
number_of_displayed_songs = st.slider(
"Number of displayed songs", min_value=1, max_value=4, value=2, step=1
)
def filter_scores(matches: Matches, th: float = 0.8) -> Matches:
return [(doc, score) for (doc, score) in matches if score > th]
def normalize_scores_by_sum(matches: Matches) -> Matches:
scores = [score for _, score in matches]
tot = sum(scores)
return [(doc, (score / tot)) for doc, score in matches]
def get_song(user_input: str, k: int = 20):
emotions = chain.run(user_input=user_input)
matches = db.similarity_search_with_score(emotions, distance_metric="cos", k=k)
# [print(doc.metadata['name'], score) for doc, score in matches]
docs, scores = zip(
*normalize_scores_by_sum(filter_scores(matches, filter_threshold))
)
choosen_docs = weighted_random_sample(
np.array(docs), np.array(scores), n=number_of_displayed_songs
).tolist()
return choosen_docs, emotions
def set_song(user_input):
if user_input == "":
return
# take first 120 chars
user_input = user_input[:120]
docs, emotions = get_song(user_input, k=max_number_of_songs)
print(docs)
songs = []
with placeholder_emotions:
st.markdown("Your emotions: `" + emotions + "`")
with placeholder:
iframes_html = ""
for doc in docs:
name = doc.metadata["name"]
print(f"song = {name}")
songs.append(name)
embed_url = doc.metadata["embed_url"]
iframes_html += (
f'<iframe src="{embed_url}" style="border:0;height:100px"> </iframe>'
)
st.markdown(
f"<div style='display:flex;flex-direction:column'>{iframes_html}</div>",
unsafe_allow_html=True,
)
if USE_STORAGE:
success_storage = storage.store(
UserInput(text=user_input, emotions=emotions, songs=songs)
)
if not success_storage:
print("[ERROR] was not able to store user_input")
if run_btn:
set_song(text_input)