Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import nltk | |
import numpy as np | |
import tflearn | |
import random | |
import json | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import googlemaps | |
import folium | |
import torch | |
import pandas as pd | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.model_selection import train_test_split | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.metrics import accuracy_score | |
# Suppress TensorFlow warnings | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
# Download necessary NLTK resources | |
nltk.download("punkt") | |
stemmer = LancasterStemmer() | |
# Load intents and chatbot training data | |
with open("intents.json") as file: | |
intents_data = json.load(file) | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
# Build the chatbot model | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
chatbot_model = tflearn.DNN(net) | |
chatbot_model.load("MentalHealthChatBotmodel.tflearn") | |
# Hugging Face sentiment and emotion models | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
# Google Maps API Client | |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY")) | |
# Load the disease dataset | |
df_train = pd.read_csv("Training.csv") # Change the file path as necessary | |
df_test = pd.read_csv("Testing.csv") # Change the file path as necessary | |
# Encode diseases | |
disease_dict = { | |
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4, | |
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9, | |
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13, | |
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19, | |
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24, | |
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28, | |
'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32, | |
'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35, | |
'(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38, | |
'Psoriasis': 39, 'Impetigo': 40 | |
} | |
# Function to prepare data | |
def prepare_data(df): | |
"""Prepares data for training/testing.""" | |
X = df.iloc[:, :-1] # Features | |
y = df.iloc[:, -1] # Target | |
label_encoder = LabelEncoder() | |
y_encoded = label_encoder.fit_transform(y) | |
return X, y_encoded, label_encoder | |
# Preparing training and testing data | |
X_train, y_train, label_encoder_train = prepare_data(df_train) | |
X_test, y_test, label_encoder_test = prepare_data(df_test) | |
# Define the models | |
models = { | |
"Decision Tree": DecisionTreeClassifier(), | |
"Random Forest": RandomForestClassifier(), | |
"Naive Bayes": GaussianNB() | |
} | |
# Train and evaluate models | |
trained_models = {} | |
for model_name, model_obj in models.items(): | |
model_obj.fit(X_train, y_train) # Fit the model | |
y_pred = model_obj.predict(X_test) # Make predictions | |
acc = accuracy_score(y_test, y_pred) # Calculate accuracy | |
trained_models[model_name] = {'model': model_obj, 'accuracy': acc} | |
# Helper Functions for Chatbot (no changes) | |
def bag_of_words(s, words): | |
"""Convert user input to bag-of-words vector.""" | |
bag = [0] * len(words) | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
def generate_chatbot_response(message, history): | |
"""Generate chatbot response and maintain conversation history.""" | |
history = history or [] | |
try: | |
result = chatbot_model.predict([bag_of_words(message, words)]) | |
tag = labels[np.argmax(result)] | |
response = "I'm sorry, I didn't understand that. 🤔" | |
for intent in intents_data["intents"]: | |
if intent["tag"] == tag: | |
response = random.choice(intent["responses"]) | |
break | |
except Exception as e: | |
response = f"Error: {e}" | |
history.append((message, response)) | |
return history, response | |
def analyze_sentiment(user_input): | |
"""Analyze sentiment and map to emojis.""" | |
inputs = tokenizer_sentiment(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
sentiment_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment_map = ["Negative 😔", "Neutral 😐", "Positive 😊"] | |
return f"Sentiment: {sentiment_map[sentiment_class]}" | |
def detect_emotion(user_input): | |
"""Detect emotions based on input.""" | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]["label"].lower().strip() | |
emotion_map = { | |
"joy": "Joy 😊", | |
"anger": "Anger 😠", | |
"sadness": "Sadness 😢", | |
"fear": "Fear 😨", | |
"surprise": "Surprise 😲", | |
"neutral": "Neutral 😐", | |
} | |
return emotion_map.get(emotion, "Unknown 🤔"), emotion | |
def generate_suggestions(emotion): | |
"""Return relevant suggestions based on detected emotions.""" | |
emotion_key = emotion.lower() | |
suggestions = { | |
"joy": [ | |
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"), | |
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Relaxation Video", "https://youtu.be/yGKKz185M5o"), | |
], | |
"anger": [ | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"), | |
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Relaxation Video", "https://youtu.be/MIc299Flibs"), | |
], | |
"fear": [ | |
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"), | |
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Relaxation Video", "https://youtu.be/yGKKz185M5o"), | |
], | |
"sadness": [ | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"), | |
], | |
"surprise": [ | |
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"), | |
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"), | |
], | |
} | |
# Create a markdown string for clickable suggestions in a table format | |
formatted_suggestions = ["### Suggestions"] | |
formatted_suggestions.append(f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:") | |
formatted_suggestions.append("| Title | Link |") | |
formatted_suggestions.append("|-------|------|") # Table headers | |
formatted_suggestions += [ | |
f"| {title} | [{link}]({link}) |" for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")]) | |
] | |
return "\n".join(formatted_suggestions) | |
def get_health_professionals_and_map(location, query): | |
"""Search nearby healthcare professionals using Google Maps API.""" | |
try: | |
if not location or not query: | |
return [], "" # Return empty list if inputs are missing | |
geo_location = gmaps.geocode(location) | |
if geo_location: | |
lat, lng = geo_location[0]["geometry"]["location"].values() | |
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"] | |
professionals = [] | |
map_ = folium.Map(location=(lat, lng), zoom_start=13) | |
for place in places_result: | |
professionals.append([place['name'], place.get('vicinity', 'No address provided')]) | |
folium.Marker( | |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], | |
popup=f"{place['name']}" | |
).add_to(map_) | |
return professionals, map_._repr_html_() | |
return [], "" # Return empty list if no professionals found | |
except Exception as e: | |
return [], "" # Return empty list on exception | |
# Main Application Logic for Chatbot | |
def app_function_chatbot(user_input, location, query, history): | |
chatbot_history, _ = generate_chatbot_response(user_input, history) | |
sentiment_result = analyze_sentiment(user_input) | |
emotion_result, cleaned_emotion = detect_emotion(user_input) | |
suggestions = generate_suggestions(cleaned_emotion) | |
professionals, map_html = get_health_professionals_and_map(location, query) | |
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html | |
# Disease Prediction Logic | |
def predict_disease(symptoms): | |
"""Predict disease based on input symptoms.""" | |
# Filter out None values | |
valid_symptoms = [s for s in symptoms if s is not None] | |
# Ensure at least 3 symptoms are selected | |
if len(valid_symptoms) < 3: | |
return "Please select at least 3 symptoms for a better prediction." | |
input_test = np.zeros(len(X_train.columns)) # Create an array for feature input | |
for symptom in valid_symptoms: | |
if symptom in X_train.columns: | |
input_test[X_train.columns.get_loc(symptom)] = 1 | |
predictions = {} | |
for model_name, info in trained_models.items(): | |
prediction = info['model'].predict([input_test])[0] | |
predicted_disease = label_encoder_train.inverse_transform([prediction])[0] | |
predictions[model_name] = predicted_disease | |
# Create a Markdown table for displaying predictions | |
markdown_output = ["### Predicted Diseases"] | |
markdown_output.append("| Model | Predicted Disease |") | |
markdown_output.append("|-------|------------------|") # Table headers | |
for model_name, disease in predictions.items(): | |
markdown_output.append(f"| {model_name} | {disease} |") | |
return "\n".join(markdown_output) | |
# Gradio Application Interface | |
with gr.Blocks() as app: | |
gr.HTML("<h1>🌟 Well-Being Companion</h1>") | |
# Theme Dropdown | |
themes = [ | |
"calm_seafoam", | |
"Ranko_test" | |
] | |
theme_dropdown = gr.Dropdown(choices=themes, label="Select Theme") | |
toggle_dark = gr.Button(value="Toggle Dark").style(full_width=True) | |
# Theme changing logic | |
theme_dropdown.change( | |
None, | |
None, | |
app, | |
_js=f""" | |
(theme) => {{ | |
let themeElem = document.createElement('link'); | |
themeElem.rel = 'stylesheet'; | |
themeElem.href = '/themes/' + theme + '.css'; // Path to the theme CSS files | |
document.head.appendChild(themeElem); | |
}} | |
""" | |
) | |
toggle_dark.click(None, _js=""" | |
() => { | |
document.body.classList.toggle('dark'); | |
} | |
""") | |
with gr.Tab("Well-Being Chatbot"): | |
with gr.Row(): | |
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3) | |
location = gr.Textbox(label="Please Enter Your Current Location", placeholder="E.g., Honolulu", max_lines=1) | |
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1) | |
submit_chatbot = gr.Button(value="Submit Your Message", variant="primary", icon="fa-paper-plane") | |
chatbot = gr.Chatbot(label="Chat History", show_label=True) | |
sentiment = gr.Textbox(label="Detected Sentiment", show_label=True) | |
emotion = gr.Textbox(label="Detected Emotion", show_label=True) | |
suggestions_markdown = gr.Markdown(label="Suggestions") | |
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) | |
map_html = gr.HTML(label="Interactive Map") | |
submit_chatbot.click( | |
app_function_chatbot, | |
inputs=[user_input, location, query, chatbot], | |
outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html], | |
) | |
with gr.Tab("Disease Prediction"): | |
symptom1 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 1", value=None) | |
symptom2 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 2", value=None) | |
symptom3 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 3", value=None) | |
symptom4 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 4", value=None) | |
symptom5 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 5", value=None) | |
submit_disease = gr.Button(value="Predict Disease", variant="primary", icon="fa-stethoscope") | |
disease_prediction_result = gr.Markdown(label="Predicted Diseases") | |
submit_disease.click( | |
lambda symptom1, symptom2, symptom3, symptom4, symptom5: predict_disease( | |
[symptom1, symptom2, symptom3, symptom4, symptom5]), | |
inputs=[symptom1, symptom2, symptom3, symptom4, symptom5], | |
outputs=disease_prediction_result | |
) | |
# Launch the Gradio application | |
app.launch() |