Testing-2 / app.py
DreamStream-1's picture
Update app.py
ae7ec88 verified
raw
history blame
14.8 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Load the disease dataset
df_train = pd.read_csv("Training.csv") # Change the file path as necessary
df_test = pd.read_csv("Testing.csv") # Change the file path as necessary
# Encode diseases
disease_dict = {
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
'(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
'Psoriasis': 39, 'Impetigo': 40
}
# Function to prepare data
def prepare_data(df):
"""Prepares data for training/testing."""
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
return X, y_encoded, label_encoder
# Preparing training and testing data
X_train, y_train, label_encoder_train = prepare_data(df_train)
X_test, y_test, label_encoder_test = prepare_data(df_test)
# Define the models
models = {
"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier(),
"Naive Bayes": GaussianNB()
}
# Train and evaluate models
trained_models = {}
for model_name, model_obj in models.items():
model_obj.fit(X_train, y_train) # Fit the model
y_pred = model_obj.predict(X_test) # Make predictions
acc = accuracy_score(y_test, y_pred) # Calculate accuracy
trained_models[model_name] = {'model': model_obj, 'accuracy': acc}
# Helper Functions for Chatbot (no changes)
def bag_of_words(s, words):
"""Convert user input to bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
"""Generate chatbot response and maintain conversation history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. 🤔"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment and map to emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative 😔", "Neutral 😐", "Positive 😊"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
"""Detect emotions based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy 😊",
"anger": "Anger 😠",
"sadness": "Sadness 😢",
"fear": "Fear 😨",
"surprise": "Surprise 😲",
"neutral": "Neutral 😐",
}
return emotion_map.get(emotion, "Unknown 🤔"), emotion
def generate_suggestions(emotion):
"""Return relevant suggestions based on detected emotions."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
],
"anger": [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/MIc299Flibs"),
],
"fear": [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
],
"sadness": [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"),
],
"surprise": [
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
],
}
# Create a markdown string for clickable suggestions in a table format
formatted_suggestions = ["### Suggestions"]
formatted_suggestions.append(f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:")
formatted_suggestions.append("| Title | Link |")
formatted_suggestions.append("|-------|------|") # Table headers
formatted_suggestions += [
f"| {title} | [{link}]({link}) |" for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")])
]
return "\n".join(formatted_suggestions)
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals using Google Maps API."""
try:
if not location or not query:
return [], "" # Return empty list if inputs are missing
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], "" # Return empty list if no professionals found
except Exception as e:
return [], "" # Return empty list on exception
# Main Application Logic for Chatbot
def app_function_chatbot(user_input, location, query, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
# Disease Prediction Logic
def predict_disease(symptoms):
"""Predict disease based on input symptoms."""
# Filter out None values
valid_symptoms = [s for s in symptoms if s is not None]
# Ensure at least 3 symptoms are selected
if len(valid_symptoms) < 3:
return "Please select at least 3 symptoms for a better prediction."
input_test = np.zeros(len(X_train.columns)) # Create an array for feature input
for symptom in valid_symptoms:
if symptom in X_train.columns:
input_test[X_train.columns.get_loc(symptom)] = 1
predictions = {}
for model_name, info in trained_models.items():
prediction = info['model'].predict([input_test])[0]
predicted_disease = label_encoder_train.inverse_transform([prediction])[0]
predictions[model_name] = predicted_disease
# Create a Markdown table for displaying predictions
markdown_output = ["### Predicted Diseases"]
markdown_output.append("| Model | Predicted Disease |")
markdown_output.append("|-------|------------------|") # Table headers
for model_name, disease in predictions.items():
markdown_output.append(f"| {model_name} | {disease} |")
return "\n".join(markdown_output)
# Gradio Application Interface
with gr.Blocks() as app:
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
# Theme Dropdown
themes = [
"calm_seafoam",
"Ranko_test"
]
theme_dropdown = gr.Dropdown(choices=themes, label="Select Theme")
toggle_dark = gr.Button(value="Toggle Dark").style(full_width=True)
# Theme changing logic
theme_dropdown.change(
None,
None,
app,
_js=f"""
(theme) => {{
let themeElem = document.createElement('link');
themeElem.rel = 'stylesheet';
themeElem.href = '/themes/' + theme + '.css'; // Path to the theme CSS files
document.head.appendChild(themeElem);
}}
"""
)
toggle_dark.click(None, _js="""
() => {
document.body.classList.toggle('dark');
}
""")
with gr.Tab("Well-Being Chatbot"):
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3)
location = gr.Textbox(label="Please Enter Your Current Location", placeholder="E.g., Honolulu", max_lines=1)
query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1)
submit_chatbot = gr.Button(value="Submit Your Message", variant="primary", icon="fa-paper-plane")
chatbot = gr.Chatbot(label="Chat History", show_label=True)
sentiment = gr.Textbox(label="Detected Sentiment", show_label=True)
emotion = gr.Textbox(label="Detected Emotion", show_label=True)
suggestions_markdown = gr.Markdown(label="Suggestions")
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
map_html = gr.HTML(label="Interactive Map")
submit_chatbot.click(
app_function_chatbot,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html],
)
with gr.Tab("Disease Prediction"):
symptom1 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 1", value=None)
symptom2 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 2", value=None)
symptom3 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 3", value=None)
symptom4 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 4", value=None)
symptom5 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 5", value=None)
submit_disease = gr.Button(value="Predict Disease", variant="primary", icon="fa-stethoscope")
disease_prediction_result = gr.Markdown(label="Predicted Diseases")
submit_disease.click(
lambda symptom1, symptom2, symptom3, symptom4, symptom5: predict_disease(
[symptom1, symptom2, symptom3, symptom4, symptom5]),
inputs=[symptom1, symptom2, symptom3, symptom4, symptom5],
outputs=disease_prediction_result
)
# Launch the Gradio application
app.launch()