Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from pandasai import Agent | |
from langchain_community.embeddings.openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.schema import Document | |
import os | |
# Set title | |
st.title("Data Analyzer") | |
# Add fields to input API keys via the sidebar | |
api_key = os.getenv("OPENAI_API_KEY") | |
pandasai_api_key = os.getenv("PANDASAI_API_KEY") | |
if not api_key or not pandasai_api_key: | |
st.warning("API keys for OpenAI or PandasAI are missing. Ensure both keys are set in environment variables.") | |
# Function to load datasets into session | |
def load_dataset_into_session(): | |
input_option = st.radio( | |
"Select Dataset Input:", | |
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], | |
) | |
# Option 1: Load dataset from the repo directory | |
if input_option == "Use Repo Directory Dataset": | |
file_path = "./source/test.csv" | |
if st.button("Load Dataset"): | |
try: | |
st.session_state.df = pd.read_csv(file_path) | |
st.success(f"File loaded successfully from '{file_path}'!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error loading dataset from the repo directory: {e}") | |
# Option 2: Load dataset from Hugging Face | |
elif input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input( | |
"Enter Hugging Face Dataset Name:", value="HUPD/hupd" | |
) | |
if st.button("Load Hugging Face Dataset"): | |
try: | |
from datasets import load_dataset | |
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) | |
if hasattr(dataset, "to_pandas"): | |
st.session_state.df = dataset.to_pandas() | |
else: | |
st.session_state.df = pd.DataFrame(dataset) | |
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error loading Hugging Face dataset: {e}") | |
# Option 3: Upload CSV File | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) | |
if uploaded_file: | |
try: | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
st.dataframe(st.session_state.df.head(10)) | |
except Exception as e: | |
st.error(f"Error reading uploaded file: {e}") | |
load_dataset_into_session() | |
# Check if the dataset and API keys are loaded | |
if "df" in st.session_state and api_key and pandasai_api_key: | |
# Set API keys | |
os.environ["OPENAI_API_KEY"] = api_key | |
os.environ["PANDASAI_API_KEY"] = pandasai_api_key | |
df = st.session_state.df | |
st.write("Dataset Preview:") | |
st.write(df.head()) | |
# Set up PandasAI Agent | |
agent = Agent(df) | |
# Convert dataframe into documents | |
documents = [ | |
Document( | |
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns]), | |
metadata={"index": index} | |
) | |
for index, row in df.iterrows() | |
] | |
# Set up RAG | |
embeddings = OpenAIEmbeddings() | |
vectorstore = FAISS.from_documents(documents, embeddings) | |
retriever = vectorstore.as_retriever() | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=ChatOpenAI(), | |
chain_type="stuff", | |
retriever=retriever | |
) | |
# Create tabs | |
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) | |
with tab1: | |
st.header("Data Analysis with PandasAI") | |
pandas_question = st.text_input("Ask a question about the dataset (PandasAI):") | |
if pandas_question: | |
result = agent.chat(pandas_question) | |
st.write("PandasAI Answer:", result) | |
with tab2: | |
st.header("Q&A with RAG") | |
rag_question = st.text_input("Ask a question about the dataset (RAG):") | |
if rag_question: | |
result = qa_chain.run(rag_question) | |
st.write("RAG Answer:", result) | |
with tab3: | |
st.header("Data Visualization") | |
viz_question = st.text_input("What kind of graph would you like? (e.g., 'Show a scatter plot of salary vs experience')") | |
if viz_question: | |
try: | |
result = agent.chat(viz_question) | |
# Extract Python code from PandasAI response | |
import re | |
code_pattern = r'```python\n(.*?)\n```' | |
code_match = re.search(code_pattern, result, re.DOTALL) | |
if code_match: | |
viz_code = code_match.group(1) | |
# Replace matplotlib with plotly | |
viz_code = viz_code.replace('plt.', 'px.') | |
viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)') | |
# Execute the modified code | |
exec(viz_code) | |
st.plotly_chart(fig) | |
else: | |
st.write("Unable to generate the graph. Please try a different query.") | |
except Exception as e: | |
st.write(f"An error occurred: {str(e)}") | |
st.write("Please try asking in a different way.") | |
else: | |
if not api_key: | |
st.warning("Please set the OpenAI API key in environment variables.") | |
if not pandasai_api_key: | |
st.warning("Please set the PandasAI API key in environment variables.") | |